



#### Varetypens unike identifikasjonskode: Ankermasse ESSVE ONE Ankermasse ESSVE ONE-ICE

#### Produsent:

ESSVE Produkter AB BOX 7091 164 07 Kista Sweden

info@essve.se

| Europeisk teknisk<br>bedømmelse<br>(ETA) | Tilsiktet bruksområde                                                                                                                                                                                                                                                                                                                                                                                                                                    | Artikkelnummer   |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ETA-18/0617 (2019-12-11)                 | Bonded anchor consisting of a cartridge with injection mortar ESSVE ONE, or ONE-ICE and a steel element<br>for use in:<br>cracked concrete strength classes C20/25 to C50/60.<br>uncracked concrete strength classes C20/25 to C50/60.                                                                                                                                                                                                                   | 302334<br>302336 |
| ETA-18/0642 (2018-10-08)                 | <ul> <li>Bonded anchor consisting of a cartridge with injection mortar ESSVE ONE, ONE-ICE and a steel element for use in:</li> <li>Masonry bricks defined in the ETA</li> <li>For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 053 under consideration of the β-factor to ETA Annex C1, Table C1.</li> </ul> | 302334<br>302336 |

| Europeisk teknisk<br>bedømmelse<br>(ETA) | System for vurdering<br>og verifikasjon av<br>byggevarers ytelser<br>(AVCP) | Europeisk<br>bedømmelsesdokument    | Teknisk bedømmelsesorgan<br>(TAB)        | Teknisk(e)<br>kontrollorgan<br>(NB) |
|------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|------------------------------------------|-------------------------------------|
| ETA-18/0617 (2019-12-11)                 | 1                                                                           | EAD 330499-01-0601, (2018-08 draft) | DEUTSCHES INSTITUT FÜR BAUTECHNIK (DIBt) | 1343 (FPC)                          |
| ETA-18/0642 (2018-10-08)                 | 1                                                                           | EAD 330076-00-0604, (2014-07)       | DEUTSCHES INSTITUT FÜR BAUTECHNIK (DIBt) | 1343 (FPC)                          |



# YTELSESERKLÆRING Nr: 18-ONE [NO]



| Europeisk teknisk<br>bedømmelse<br>(ETA) | Dimensjon<br>&<br>Materiale                                   | Egenskap                                                                           | Ytelse               |
|------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|
|                                          |                                                               | Characteristic resistance to tension load (static and quasi-static loading)        | Annex C1, C2, C4, C6 |
|                                          | Threaded rod M8 to M30                                        | Characteristic resistance to shear load (static and quasi-static loading)          | Annex C1, C3, C5, C7 |
|                                          | Internal threaded rod IG-M6 to IG-M20                         | Displacements under short term and long-<br>term loading                           | Annex C8 – C10       |
| ETA-18/0617 (2019-12-11)                 |                                                               | Durability                                                                         | Annex B1             |
|                                          | Threaded rod M8 to M30 (except hot-dipped)<br>Rebar Ø8 to Ø32 | Characteristic resistance and displacements<br>for seismic performance category C1 | Annex C2, C3, C6, C7 |
|                                          | -                                                             | Characteristic resistance and displacements for seismic performance category C2    | NPD                  |
|                                          | -                                                             | Content, emission and/or release of dangerous substances                           | NPD                  |
|                                          |                                                               | Characteristic values for resistance                                               | Annex C6 – C45       |
|                                          |                                                               | Reduction $\beta$ -factors for job-site testing                                    | Annex C1             |
| ETA-18/0642 (2018-10-08)                 | Threaded rod M8 to M16<br>IG-M6 to IG-M10                     | Displacements                                                                      | Annex C5 – C45       |
|                                          |                                                               | Durability                                                                         | Annex B1             |
|                                          |                                                               | Reaction to fire                                                                   | Class A1             |
|                                          | -                                                             | Content, emission and/or release of dangerous substances                           | NPD                  |

Ytelser for denne byggevaren som er anført ovenfor, er i overensstemmelse med de angitte ytelsene. Denne ytelseserklæringen er utarbeidet i overensstemmelse med forordning (EU) nr. 305/2011 under produsentens eneansvar, som anført ovenfor.

Underskrevet for produsenten og på dennes vegne:

Kista 2020-01-20

Viktor Bukowski Product Developer/Technical expert – Fasteners

[ETA's attached as appendixes]





Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



### European Technical Assessment

### ETA-18/0617 of 11 December 2019

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Injection system ESSVE ONE or ESSVE ONE-ICE for concrete Product family Bonded fastener for use in concrete to which the construction product belongs **ESSVE** Produkter AB Manufacturer Esbogatan 14 164 74 KISTA SCHWEDEN ESSVE Plant No. 671 Manufacturing plant This European Technical Assessment 31 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330499-01-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-18/0617 issued on 15 February 2019



European Technical Assessment ETA-18/0617 English translation prepared by DIBt

Page 2 of 31 | 11 December 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 31 | 11 December 2019

#### Specific Part

#### 1 Technical description of the product

The "Injection System ESSVE ONE, ESSVE ONE-ICE for concrete" is a bonded anchor consisting of a cartridge with injection ESSVE ONE or ESSVE ONE-ICE and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of  $\emptyset$  8 to  $\emptyset$  32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                          | Performance                       |
|-----------------------------------------------------------------------------------|-----------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)       | See Annex<br>C 1 to C 3, C 5, C 7 |
| Characteristic resistance to shear load (static and quasi-static loading)         | See Annex<br>C1, C 4, C 6, C 8    |
| Displacements<br>(static and quasi-static loading)                                | See Anne<br>C 9 to C 11           |
| Characteristic resistance and displacements for seismic performance categories C1 | See Anne<br>C 12 to C 16          |
| Characteristic resistance and displacements for seismic performance categories C2 | No performance assessed           |
| Durability                                                                        | See Annex B 1                     |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |



Page 4 of 31 | 11 December 2019

## European Technical Assessment ETA-18/0617

English translation prepared by DIBt

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

## 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 December 2019 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department *beglaubigt:* Baderschneider











| Threaded rod M8, M10, M12, M16, M                                               | 120, M24, M27, M30 with washer and hexag                                                             | on nut                                                                                                                                      |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | es<br>Commercia<br>rod with:<br>- Mater<br>mecha<br>Table<br>- Inspect<br>to EN<br>- Markin<br>depth | al standard threaded<br>ials, dimensions and<br>anical properties acc.<br>A1<br>ction certificate 3.1 acc.<br>10204:2004<br>ng of embedment |
| Internal threaded anchor rod IG-M6                                              | , IG-M8, IG-M10, IG-M12, IG-M16, IG-M20                                                              |                                                                                                                                             |
| Threaded rod or screw                                                           | Mark of the producer                                                                                 | 4)                                                                                                                                          |
|                                                                                 |                                                                                                      | σ                                                                                                                                           |
|                                                                                 | Marking: e.g. M8                                                                                     |                                                                                                                                             |
|                                                                                 | Marking Internal thread                                                                              |                                                                                                                                             |
|                                                                                 | Mark                                                                                                 |                                                                                                                                             |
|                                                                                 | A4 additional mark for stainless steel<br>HCR additional mark for high-corrosion resi                | istance steel                                                                                                                               |
| Filling washer and mixer reduction fixture                                      | nozzle for filling the annular gap between                                                           | anchor rod and                                                                                                                              |
| ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |                                                                                                      |                                                                                                                                             |
| Injection System ESSVE ONE, ESSVE ONE<br>Product description                    | -ICE for concrete                                                                                    | Annex A 3                                                                                                                                   |
|                                                                                 |                                                                                                      |                                                                                                                                             |



| Tab                                                 | le A1: Materials                                                                                           |                                                                                            |                          |                                                                 |                                 |             |                           |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|---------------------------------|-------------|---------------------------|
| Part                                                | Designation                                                                                                | Material                                                                                   |                          |                                                                 |                                 |             |                           |
| Stee                                                | I, zinc plated (Steel acc. to EN<br>the plated $\geq 5 \mu m$ act dis calculated $\geq 40 \mu m$           | N 10087:1998 or EN 10263<br>cc. to EN ISO 4042:1999 or                                     | :200                     | 1)                                                              | AC:2000 or                      |             |                           |
| - nu                                                | erardized $\geq$ 40 µm ac                                                                                  | c. to EN ISO 17668:2016                                                                    |                          | 130 10004.2004+                                                 | AC.2009 01                      |             |                           |
|                                                     |                                                                                                            | Property class                                                                             |                          | Characteristic tensile strength                                 | Characteri<br>yield stren       | stic<br>gth | Elongation at<br>fracture |
|                                                     |                                                                                                            |                                                                                            | 4.6                      | $f_{uk} = 400 \text{ N/mm}^2$                                   | f <sub>yk</sub> = 240 N         | <br>I/mm²   | A <sub>5</sub> > 8%       |
| 1                                                   | Threaded rod                                                                                               |                                                                                            | 4.8                      | f <sub>uk</sub> = 400 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 320 N         | l/mm²       | A <sub>5</sub> > 8%       |
| ·                                                   |                                                                                                            |                                                                                            | 5.6                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 300 N         | l/mm²       | A <sub>5</sub> > 8%       |
|                                                     |                                                                                                            | LIN 130 090-1.2013                                                                         | 5.8                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 400 N         | l/mm²       | A <sub>5</sub> > 8%       |
|                                                     |                                                                                                            |                                                                                            | 8.8                      | f <sub>uk</sub> = 800 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 640 N         | l/mm²       | A <sub>5</sub> ≥ 8%       |
|                                                     |                                                                                                            | and to                                                                                     | 4                        | for threaded rod c                                              | lass 4.6 or 4                   | 4.8         |                           |
| 2                                                   | Hexagon nut                                                                                                | EN ISO 898-2:2012                                                                          | 5                        | for threaded rod c                                              | lass 5.6 or 5                   | 5.8         |                           |
|                                                     |                                                                                                            |                                                                                            | 8                        | for threaded rod c                                              | lass 8.8                        |             |                           |
| 3a                                                  | Washer                                                                                                     | Steel, zinc plated, not-dip g                                                              | gaiva<br>N ISi           | 0 7089.2000 EN IS                                               | ea<br>SO 7093-20                | 00 or F     | N ISO 7094·2000)          |
| 3b                                                  | Filling washer                                                                                             | Steel, zinc plated, hot-dip                                                                | galva                    | anised or sherardize                                            | ed                              | 00 01 L     | 1100 /00 1.2000/          |
|                                                     | Internal threaded                                                                                          | Property class                                                                             | 0                        | Characteristic tensile strength                                 | Characteri<br>yield stren       | stic<br>gth | Elongation at<br>fracture |
| 4                                                   | anchor rod                                                                                                 | acc. to                                                                                    | 5.8                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 400 N         | u/mm²       | A <sub>5</sub> > 8%       |
|                                                     |                                                                                                            | EN ISO 898-1:2013                                                                          | 8.8                      | f <sub>uk</sub> = 800 N/mm²                                     | f <sub>vk</sub> = 640 N         | l/mm²       | A <sub>5</sub> > 8%       |
| Stair<br>Stair<br>High                              | Iless steel A2 (Material 1.430<br>Iless steel A4 (Material 1.440<br>corrosion resistance steel (           | 1 / 1.4307 / 1.4311 / 1.4567<br>1 / 1.4404 / 1.4571 / 1.4362<br>Material 1.4529 or 1.4565, | ' or 1<br>2 or 1<br>acc. | .4541, acc. to EN 1<br>.4578, acc. to EN 1<br>to EN 10088-1: 20 | 0088-1:201<br>0088-1:201<br>14) | 14)<br>14)  |                           |
|                                                     |                                                                                                            | Property class                                                                             |                          | Characteristic tensile strength                                 | Characteri<br>yield stren       | stic<br>gth | Elongation at<br>fracture |
| 1                                                   | Threaded rod <sup>1)3)</sup>                                                                               | +-                                                                                         | 50                       | $f_{uk} = 500 \text{ N/mm}^2$                                   | f <sub>yk</sub> = 210 N         | I/mm²       | A <sub>5</sub> ≥ 8%       |
|                                                     |                                                                                                            | EN ISO 3506-1:2009                                                                         |                          | f <sub>uk</sub> = 700 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 450 N         | I/mm²       | A <sub>5</sub> ≥ 8%       |
|                                                     |                                                                                                            |                                                                                            |                          | f <sub>uk</sub> = 800 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 600 N         | I/mm²       | A <sub>5</sub> ≥ 8%       |
|                                                     | 1)2)                                                                                                       | acc to                                                                                     | 50                       | for threaded rod c                                              | lass 50                         |             |                           |
| 2                                                   | Hexagon nut 133                                                                                            | EN ISO 3506-1:2009                                                                         | 70                       | for threaded rod c                                              | lass 70                         |             |                           |
|                                                     |                                                                                                            | Δ2· Material 1 4301 / 1 43(                                                                | 80<br>17 / 1             | 10r threaded rod c                                              | 1855 80                         | to EN       | 10088-1.2014              |
| 0-                                                  |                                                                                                            | A4: Material 1.4401 / 1.440                                                                | )4 / 1                   | 1.4571 / 1.4362 or 1                                            | 1.4578, acc.                    | to EN       | 10088-1:2014              |
| 38                                                  | Washer                                                                                                     | HCR: Material 1.4529 or 1                                                                  | .456                     | 5, acc. to EN 10088                                             | 3-1: 2014                       |             |                           |
| 26                                                  | Filling weeker                                                                                             | (e.g.: EN ISO 887:2006, E<br>Stainlags steel A4, High or                                   | NIS                      | 0 7089:2000, EN IS                                              | 50 7093:20                      | 00 or E     | N ISO 7094:2000)          |
| 30                                                  |                                                                                                            |                                                                                            | mos                      | Characteristic                                                  | Characteri                      | stic        | Elongation at             |
|                                                     |                                                                                                            | Property class                                                                             |                          | tensile strength                                                | yield stren                     | gth         | fracture                  |
|                                                     | Internal threaded                                                                                          | acc. to                                                                                    | 50                       | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 210 N         | I/mm²       | A <sub>5</sub> > 8%       |
| 4                                                   | anchor rod <sup>1)2)</sup>                                                                                 | EN ISO 3506-1:2009                                                                         | 70                       | f <sub>uk</sub> = 700 N/mm <sup>2</sup>                         | f <sub>yk</sub> = 450 N         | I/mm²       | A <sub>5</sub> > 8%       |
| <sup>1)</sup>  <br><sup>2)</sup> f<br><sup>3)</sup> | Property class 70 for threaded ro<br>or IG-M20 only property class 5<br>Property class 80 only for stainle | ods up to M24 and Internal th<br>0<br>ess steel A4                                         | iread                    | ed anchor rods up to                                            | o IG-M16,                       |             |                           |
| Inje                                                | ction System ESSVE ONE, ES                                                                                 | SVE ONE-ICE for concrete                                                                   |                          |                                                                 |                                 |             |                           |
| Pro                                                 | duct description                                                                                           |                                                                                            |                          |                                                                 |                                 |             | Annex A 4                 |



| Reir         | nforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 10                                                                                        | 6, Ø 20, Ø 25, Ø 28, Ø 32                                                                                            |             |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              | h <sub>ef</sub>                                                                                                                 | 1                                                                                                                    |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              | <ul> <li>Minimum value of related rip area f<sub>R,min</sub> ac</li> <li>Bib beight of the bar shall be in the range</li> </ul> | cording to EN 1992-1-1:2004+AC:2010                                                                                  |             |  |  |  |  |
|              | (d: Nominal diameter of the bar; h: Rip hei                                                                                     | ight of the bar)                                                                                                     |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
| Tabl         | e A2: Materials                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              | I                                                                                                                               | Т                                                                                                                    |             |  |  |  |  |
| Part         | Designation                                                                                                                     | Material                                                                                                             |             |  |  |  |  |
| Reinf        | orcing bars                                                                                                                     |                                                                                                                      |             |  |  |  |  |
| 1            | Rebar<br>EN 1992-1-1:2004+AC:2010, Annex C                                                                                      | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$ | 1992-1-1/NA |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |
| Injec        | tion System ESSVE ONE, ESSVE ONE-ICE for o                                                                                      | concrete                                                                                                             | _           |  |  |  |  |
| Proc<br>Mate | luct description<br>erials reinforcing bar                                                                                      |                                                                                                                      | Annex A 5   |  |  |  |  |
|              |                                                                                                                                 |                                                                                                                      |             |  |  |  |  |



#### Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

#### **Base materials:**

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

#### **Temperature Range:**

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
  - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
  - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
  - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

#### Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

#### Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

Intended Use Specifications Annex B 1

#### Deutsches Institut für Bautechnik

| Table B1: Installation                                    | Table B1:         Installation parameters for threaded rod |                          |                                   |                     |                          |                |                                   |        |                   |      |                   |                   |       |        |
|-----------------------------------------------------------|------------------------------------------------------------|--------------------------|-----------------------------------|---------------------|--------------------------|----------------|-----------------------------------|--------|-------------------|------|-------------------|-------------------|-------|--------|
| Anchor size                                               |                                                            |                          |                                   | M8                  | М                        | 10             | М                                 | 12     | M16               | M20  | M                 | 24                | M27   | M30    |
| Outer diameter of anchor                                  |                                                            | d <sub>nom</sub> [mm]    | ] =                               | 8                   | 1                        | 0              | 1                                 | 12     | 16                | 20   | 2                 | 4                 | 27    | 30     |
| Nominal drill hole diameter                               |                                                            | d <sub>0</sub> [mm]      | ] =                               | 10                  | 1                        | 2              | 1                                 | 14     | 18                | 24   | 2                 | 8                 | 32    | 35     |
| <b>Effective contractor</b>                               | ł                                                          | n <sub>ef,min</sub> [mm] | ] =                               | 60                  | 6                        | 0              | 7                                 | 70     | 80                | 90   | 9                 | 6                 | 108   | 120    |
|                                                           | h                                                          | n <sub>ef,max</sub> [mm] | ] =                               | 160                 | 20                       | 20             | 2                                 | 40     | 320               | 400  | 48                | 30                | 540   | 600    |
| Diameter of clearance hole in the fixture                 |                                                            | d <sub>f</sub> [mm       | ]≤                                | 9                   | 1                        | 2              | 1                                 | 14     | 18                | 22   | 2                 | 6                 | 30    | 33     |
| Diameter of steel brush                                   |                                                            | d <sub>b</sub> [mm       | ]≥                                | 12                  | 1                        | 4              | 1                                 | 16     | 20                | 26   | 3                 | 0                 | 34    | 37     |
| Maximum torque moment                                     |                                                            | T <sub>inst</sub> [Nm    | ]≤                                | 10                  | 2                        | 20             | 4                                 | 40     | 80                | 120  | 16                | 60                | 180   | 200    |
| Minimum thickness of memb                                 | er                                                         | h <sub>min</sub> [m      | m] h                              | 1 <sub>ef</sub> + 3 | 0 mn                     | n ≥ 10         | 00 r                              | mm     |                   |      | h <sub>ef</sub> + | - 2d <sub>0</sub> |       |        |
| Minimum spacing                                           |                                                            | s <sub>min</sub> [m      | m]                                | 40                  | 5                        | 0              | 6                                 | 50     | 80                | 100  | 12                | 20                | 135   | 150    |
| Minimum edge distance                                     |                                                            | c <sub>min</sub> [m      | m]                                | 40                  | 5                        | 0              | 6                                 | 50     | 80                | 100  | 12                | 20                | 135   | 150    |
| Table B2:   Installation                                  | Table B2:   Installation parameters for rebar              |                          |                                   |                     |                          |                |                                   |        |                   |      |                   |                   |       |        |
| Rebar size                                                |                                                            |                          | Ø 8                               | Ø                   | 10                       | Ø 1:           | 2                                 | Ø1     | 4 Ø 16            | Ø 20 |                   | ð 25              | Ø 28  | Ø 32   |
| Outer diameter of anchor                                  | d <sub>no</sub>                                            | <sub>m</sub> [mm] =      | 8                                 | 1                   | 0                        | 12             |                                   | 14     | 16                | 20   |                   | 25                | 28    | 32     |
| Nominal drill hole diameter                               | C                                                          | d <sub>0</sub> [mm] =    | 12                                | 1                   | 4                        | 16             |                                   | 18     | 20                | 24   |                   | 32                | 35    | 40     |
| Effective embedment depth                                 | h <sub>ef,m</sub>                                          | <sub>iin</sub> [mm] =    | 60                                | 6                   | 50                       | 70             |                                   | 75     | 80                | 90   |                   | 100               | 112   | 128    |
| •                                                         | h <sub>ef,ma</sub>                                         | <sub>ax</sub> [mm] =     | 160                               | 2                   | 00                       | 240            | )                                 | 280    | ) 320             | 400  | !                 | 500               | 580   | 640    |
| Diameter of steel brush                                   | C                                                          | d <sub>b</sub> [mm] ≥    | 14                                | 1                   | 6                        | 18             |                                   | 20     | 22                | 26   |                   | 34                | 37    | 41,5   |
| Minimum thickness of member                               | ł                                                          | h <sub>min</sub> [mm]    | [mm] n <sub>ef</sub> + 3<br>≥ 100 |                     | 0 mm<br>) mm             |                | h <sub>ef</sub> + 2d <sub>0</sub> |        | d <sub>0</sub>    |      |                   |                   |       |        |
| Minimum spacing                                           | 8                                                          | s <sub>min</sub> [mm]    | 40                                | 5                   | 50                       | 60             |                                   | 70     | 80                | 100  | ·                 | 125               | 140   | 160    |
| Minimum edge distance                                     | (                                                          | c <sub>min</sub> [mm]    | 40                                | 5                   | 50                       | 60             |                                   | 70     | 80                | 100  |                   | 125               | 140   | 160    |
| Table B3: Installation                                    | param                                                      | eters for                | interr                            | hal th              | read                     | ed an          | 1ch                               | ior ro |                   |      | 10                |                   | M16   | IG-M20 |
| Internal diameter of anchor                               |                                                            | d <sub>a</sub> [         | mml -                             | _                   | 6                        |                | 8                                 | 0      | 10                | 12   | 12                | 10-1              | 6     | 20     |
| Outer diameter of anchor <sup>1)</sup>                    |                                                            | d [                      |                                   | =                   | 10                       |                | 12                                | 2      | 16                | 20   |                   | 2                 | 4     | 30     |
| Nominal drill hole diameter                               |                                                            | d_0 [                    |                                   | =                   | 12                       |                | 14                                | 1      | 18                | 22   |                   | 2                 | 8     | 35     |
| Effective embedment depth                                 |                                                            | h <sub>ef,min</sub> [    |                                   | =                   | 60                       |                | 70                                | )      | 80                | 90   |                   | 9                 | 6     | 120    |
|                                                           |                                                            | h <sub>ef,max</sub> [    | mm] =                             | = 2                 | 200                      |                | 24                                | 0      | 320               | 400  | )                 | 48                | 30    | 600    |
| Diameter of clearance hole in the fixture                 |                                                            | d <sub>f</sub> [         | mm] =                             | =                   | 7                        |                | 9                                 |        | 12                | 14   |                   | 1                 | 8     | 22     |
| Maximum torque moment                                     |                                                            | T <sub>inst</sub> [      | [Nm]                              | ≤                   | 10                       |                | 10                                | )      | 20                | 40   |                   | 6                 | 0     | 100    |
| Thread engagement length I <sub>IG</sub> [                |                                                            | mm] =                    | = 8                               | /20                 |                          | 8/2            | 0                                 | 10/25  | 12/3              | 80   | 16/               | /32               | 20/40 |        |
| Minimum thickness of memb                                 | er                                                         | h <sub>mi</sub>          | n [mm                             | ]                   | h <sub>ef</sub> +<br>≥ 1 | - 30 m<br>00 m | nm<br>m                           |        | h <sub>ef</sub> - |      |                   | + 2d <sub>0</sub> |       |        |
| Minimum spacing                                           |                                                            | S <sub>mi</sub>          | n [mm                             | ]                   | 50                       |                | 60                                | )      | 80                | 100  | )                 | 12                | 20    | 150    |
| Minimum edge distance                                     |                                                            | C <sub>min</sub>         | <u>n [mm</u>                      | ]                   | 50                       |                | 60                                | )      | 80                | 100  | )                 | 12                | 20    | 150    |
| With metric threads according to EN 1993-1-8:2005+AC:2009 |                                                            |                          |                                   |                     |                          |                |                                   |        |                   |      |                   |                   |       |        |

#### Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

Intended Use Installation parameters Annex B 2



| Table B4:                                                                                                                                                               | Paran      | neter cleanin                      | g and settin                                   | ig tools  | 5                     |                                         |                |           |                                |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|------------------------------------------------|-----------|-----------------------|-----------------------------------------|----------------|-----------|--------------------------------|-----------------|
|                                                                                                                                                                         |            |                                    | 2                                              |           |                       |                                         |                |           |                                |                 |
| Threaded<br>Rod                                                                                                                                                         | Rebar      | Internal<br>threaded<br>Anchor rod | d <sub>0</sub><br>Drill bit - Ø<br>HD, HDB, CA | d<br>Brus | <sup>⊾</sup><br>h - Ø | d <sub>b,min</sub><br>min.<br>Brush - Ø | Piston<br>plug | Installat | ion direction<br>of piston plu | n and use<br>Ig |
| [mm]                                                                                                                                                                    | [mm]       | [mm]                               | [mm]                                           |           | [mm]                  | [mm]                                    |                | Ļ         |                                |                 |
| M8                                                                                                                                                                      |            |                                    | 10                                             | RBT10     | 12                    | 10,5                                    |                | •         | ·                              |                 |
| M10                                                                                                                                                                     | 8          | IG-M6                              | 12                                             | RBT12     | 14                    | 12,5                                    |                | No pistor |                                | d               |
| M12                                                                                                                                                                     | 10         | IG-M8                              | 14                                             | RBT14     | 16                    | 14,5                                    |                | no pistor | i piug require                 | iu ii           |
|                                                                                                                                                                         | 12         |                                    | 16                                             | RBT16     | 18                    | 16,5                                    |                |           |                                |                 |
| M16                                                                                                                                                                     | 14         | IG-M10                             | 18                                             | RBT18     | 20                    | 18,5                                    | VS18           |           |                                |                 |
|                                                                                                                                                                         | 16         |                                    | 20                                             | RBT20     | 22                    | 20,5                                    | VS20           | 4         |                                |                 |
| M20                                                                                                                                                                     | 20         | IG-M12                             | 24                                             | RBT24     | 26                    | 24,5                                    | VS24           | h >       | h>                             |                 |
| M24                                                                                                                                                                     |            | IG-M16                             | 28                                             | RBT28     | 30                    | 28,5                                    | VS28           | 250 mn    | n 250 mm                       | all             |
| M27                                                                                                                                                                     | 25         |                                    | 32                                             | RBT32     | 34                    | 32,5                                    | VS32           | 200       |                                |                 |
| M30                                                                                                                                                                     | 28         | IG-M20                             | 35                                             | RBT35     | 37                    | 35,5                                    | VS35           | -         |                                |                 |
|                                                                                                                                                                         |            |                                    |                                                |           |                       |                                         |                |           |                                |                 |
| MAC - Hand pump (volume 750 ml)         Drill bit diameter (d_0): 10 mm to 20 mm         Drill hole depth (h_0): < 10 d <sub>nom</sub> Only in non-cracked concrete     |            |                                    |                                                |           |                       |                                         |                |           |                                |                 |
| Fiston plug for overhead or horizontal installation VS       Steel brush RBT       Drill bit diameter (d₀): 18 mm to 40 mm       Drill bit diameter (d₀): all diameters |            |                                    |                                                |           |                       |                                         |                |           |                                |                 |
| Injection Sy<br>Intended U                                                                                                                                              | vstem ESSV | E ONE, ESSVI                       | E ONE-ICE fo                                   | or concre | ete                   |                                         |                |           | Annex                          | В 3             |



| Installation instruct                                                                                                                                                                                                                                                                                    | ons                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|
| Drilling of the bore hole                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                    |                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.<br>In case of aborted drill hole: The drill hole shall be filled with mortar |                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | Attention! Standing water in the bore hole must be removed before                                                                                                                                                                                                                                                                                                                  | ore cleaning.                                 |  |  |  |  |  |  |
| MAC: Cleaning for b                                                                                                                                                                                                                                                                                      | ore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (und                                                                                                                                                                                                                                                                                                     | cracked concrete only!)                       |  |  |  |  |  |  |
| 4x                                                                                                                                                                                                                                                                                                       | <ul> <li>2a. Starting from the bottom or back of the bore hole, blow the hole cl<br/>(Annex B 3) a minimum of four times.</li> </ul>                                                                                                                                                                                                                                               | ean by a hand pump <sup>1)</sup>              |  |  |  |  |  |  |
| <u>********</u> **                                                                                                                                                                                                                                                                                       | <ul> <li>Check brush diameter (Table B4). Brush the hole with an appropr</li> <li>d<sub>b,min</sub> (Table B4) a minimum of four times in a twisting motion.</li> <li>If the bore hole ground is not reached with the brush, a brush ext</li> </ul>                                                                                                                                | iate sized wire brush<br>ension must be used. |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | 2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.                                                                                                                                                                                                                                                                                        |                                               |  |  |  |  |  |  |
| 4x                                                                                                                                                                                                                                                                                                       | <ul> <li><sup>1)</sup> It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d<sub>nom</sub> also in cracked concrete with hand-pump.</li> </ul>                                                                                                                                                                                 |                                               |  |  |  |  |  |  |
| CAC: Cleaning for a                                                                                                                                                                                                                                                                                      | I bore hole diameter in uncracked and cracked concrete                                                                                                                                                                                                                                                                                                                             |                                               |  |  |  |  |  |  |
| 4x                                                                                                                                                                                                                                                                                                       | 2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of four times stream is free of noticeable dust. If the bore hole ground is not rea extension must be used.                                                                                                                                               | lean with<br>until return air<br>ached an     |  |  |  |  |  |  |
| <b>********</b> **                                                                                                                                                                                                                                                                                       | <ul> <li>2b. Check brush diameter (Table B4). Brush the hole with an appropr</li> <li>&gt; d<sub>b,min</sub> (Table B4) a minimum of four times in a twisting motion.</li> <li>If the bore hole ground is not reached with the brush, a brush external</li> </ul>                                                                                                                  | iate sized wire brush<br>ension must be used. |  |  |  |  |  |  |
| 4x                                                                                                                                                                                                                                                                                                       | 20. Finally blow the hole clean again with compressed air (min. 6 bar minimum of four times until return air stream is free of noticeable ground is not reached an extension must be used.                                                                                                                                                                                         | ) (Annex B 3) a<br>dust. If the bore hole     |  |  |  |  |  |  |
| After cleaning, the bore hole has to be protected against re-contamination in<br>an appropriate way, until dispensing the mortar in the bore hole. If necessary,<br>the cleaning has to be repeated directly before dispensing the mortar.<br>In-flowing water must not contaminate the bore hole again. |                                                                                                                                                                                                                                                                                                                                                                                    |                                               |  |  |  |  |  |  |
| Injection System ESS                                                                                                                                                                                                                                                                                     | VE ONE, ESSVE ONE-ICE for concrete                                                                                                                                                                                                                                                                                                                                                 |                                               |  |  |  |  |  |  |
| Intended Use<br>Installation instruction                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                 | Annex B 4                                     |  |  |  |  |  |  |



| Installation instructions (continuation) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
|                                          | 3 Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne cartridge into the<br>ing time (Annex B 6) as                                             |  |  |  |  |
| i- her -i                                | Prior to inserting the anchor rod into the filled bore hole, the positio<br>depth shall be marked on the anchor rods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n of the embedment                                                                           |  |  |  |  |
| min. 3 full<br>stroke                    | 5 Prior to dispensing into the anchor hole, squeeze out separately a r<br>strokes and discard non-uniformly mixed adhesive components unt<br>consistent grey colour. For foil tube cartridges it must be discarded<br>strokes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ninimum of three full<br>il the mortar shows a<br>a minimum of six full                      |  |  |  |  |
|                                          | 6. Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static r hole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe the given in Annex B 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hole up to<br>nixing nozzle as the<br>nchor hole is not<br>he gel-/ working times            |  |  |  |  |
|                                          | <ul> <li>Piston plugs and mixer nozzle extensions shall be used according t following applications:</li> <li>Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h<sub>ef</sub> &gt; 2</li> <li>Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o Table B4 for the<br>(vertical downwards<br>50mm<br>≥ 18 mm                                 |  |  |  |  |
|                                          | 8. Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | turning slightly to<br>pth is reached.                                                       |  |  |  |  |
|                                          | The anchor shall be free of dirt, grease, oil or other foreign material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              |  |  |  |  |
|                                          | 9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fixed applied application the anchor rod shall be fixed applied application the anchor rod shall be fixed applied applie | d that excess mortar is<br>ned, the application has<br>ked (e.g. wedges).                    |  |  |  |  |
| +20°C                                    | 10. Allow the adhesive to cure to the specified time prior to applying ar not move or load the anchor until it is fully cured (attend Annex B 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ny load or torque. Do<br>i).                                                                 |  |  |  |  |
| Tinet                                    | 11. After full curing, the add-on part can be installed with up to the max<br>(Table B1 or B3) by using a calibrated torque wrench. It can be opt<br>gap between anchor and fixture with mortar. Therefor substitute the<br>washer and connect the mixer reduction nozzle to the tip of the mix<br>filled with mortar, when mortar oozes out of the washer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x. torque<br>tional filled the annular<br>e washer by the filling<br>ker. The annular gap is |  |  |  |  |
| Injection System ES                      | SVE ONE, ESSVE ONE-ICE for concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |  |  |  |  |
| Intended Lise                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annex B 5                                                                                    |  |  |  |  |

Installation instructions (continuation)



| Table B5:                                          | Table B5:       Maximum working time and minimum curing time         ESSVE ONE |                                |                                        |                  |                                            |  |  |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|------------------|--------------------------------------------|--|--|--|--|--|
| Concre                                             | te temp                                                                        | perature                       | Gelling- / working time                | Minimu<br>in dr  | Im curing time<br>y concrete <sup>1)</sup> |  |  |  |  |  |
| -10 °C                                             | to                                                                             | -6°C                           | 90 min <sup>2)</sup>                   |                  | 24 h <sup>2)</sup>                         |  |  |  |  |  |
| -5 °C                                              | to                                                                             | -1°C                           | 90 min                                 |                  | 14 h                                       |  |  |  |  |  |
| 0 °C                                               | to                                                                             | +4°C                           | 45 min                                 |                  | 7 h                                        |  |  |  |  |  |
| +5 °C                                              | to                                                                             | +9°C                           | 25 min                                 |                  | 2 h                                        |  |  |  |  |  |
| + 10 °C                                            | to                                                                             | +19°C                          | 15 min                                 |                  | 80 min                                     |  |  |  |  |  |
| + 20 °C                                            | to                                                                             | +29°C                          | 6 min                                  |                  | 45 min                                     |  |  |  |  |  |
| + 30 °C                                            | to                                                                             | +34°C                          | 4 min                                  | 4 min 25 min     |                                            |  |  |  |  |  |
| + 35 °C                                            | to                                                                             | +39°C                          | 2 min                                  |                  | 20 min                                     |  |  |  |  |  |
|                                                    | + 40 °C                                                                        | )                              | 1,5 min                                |                  | 15 min                                     |  |  |  |  |  |
| Cartride                                           | ge temp                                                                        | perature                       | +5°C to -                              | +40°C            |                                            |  |  |  |  |  |
| <sup>1)</sup> In wet co<br><sup>2)</sup> Cartridge | ncrete t<br>tempe                                                              | he curing tim<br>rature must b | e must be doubled.<br>e at min. +15°C. |                  |                                            |  |  |  |  |  |
| Table B6:                                          | . M                                                                            | lavimum wo                     | rking time and minimum curing time     |                  |                                            |  |  |  |  |  |
|                                                    | E                                                                              | SSVE ONE-I                     | CE                                     |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |
| Concre                                             | te temp                                                                        | perature                       | Gelling- / working time                | Minimu<br>in dry | Im curing time<br>y concrete <sup>1)</sup> |  |  |  |  |  |
| -20 °C                                             | to                                                                             | -16°C                          | 75 min                                 |                  | 24 h                                       |  |  |  |  |  |
| -15 °C                                             | to                                                                             | -11°C                          | 55 min                                 |                  | 16 h                                       |  |  |  |  |  |
| -10 °C                                             | to                                                                             | -6°C                           | 35 min                                 |                  | 10 h                                       |  |  |  |  |  |
| -5 °C                                              | to                                                                             | -1°C                           | 20 min                                 |                  | 5 h                                        |  |  |  |  |  |
| 0 °C                                               | to                                                                             | +4°C                           | 10 min                                 |                  | 2,5 h                                      |  |  |  |  |  |
| +5 °C                                              | to                                                                             | +9°C                           | 6 min                                  |                  | 80 Min                                     |  |  |  |  |  |
| +                                                  | 10 °C                                                                          |                                | 6 min                                  |                  | 60 Min                                     |  |  |  |  |  |
| Cartrido                                           | ge temp                                                                        | perature                       | -20°C to -                             | +10°C            |                                            |  |  |  |  |  |
| <sup>1)</sup> In wet co                            | ncrete t                                                                       | he curing tim                  | e must be doubled.                     |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        | I                |                                            |  |  |  |  |  |
| Injection S                                        | ystem E                                                                        | SSVE ONE, E                    | SSVE ONE-ICE for concrete              |                  |                                            |  |  |  |  |  |
| Intended                                           | Use                                                                            |                                |                                        |                  | Annex B 6                                  |  |  |  |  |  |
| Curing tim                                         | е                                                                              |                                |                                        |                  |                                            |  |  |  |  |  |
|                                                    |                                                                                |                                |                                        |                  |                                            |  |  |  |  |  |



| T     | able C1:         | Characteristic values for s rods | teel tens                                   | sion re            | esistanc | e and s | teel sh | ear res | sistanc | e of th | readed | l    |  |  |
|-------|------------------|----------------------------------|---------------------------------------------|--------------------|----------|---------|---------|---------|---------|---------|--------|------|--|--|
| Siz   | ze               |                                  |                                             |                    | M8       | M10     | M12     | M16     | M20     | M24     | M27    | M30  |  |  |
| Cr    | oss section are  | ea                               | A <sub>s</sub>                              | [mm <sup>2</sup> ] | 36,6     | 58      | 84,3    | 157     | 245     | 353     | 459    | 561  |  |  |
| Cł    | naracteristic te | ension resistance, Steel failure | e <sup>1)</sup>                             |                    |          |         |         |         |         |         |        |      |  |  |
| Ste   | eel, Property c  | lass 4.6 and 4.8                 | N <sub>Rk,s</sub>                           | [kN]               | 15 (13)  | 23 (21) | 34      | 63      | 98      | 141     | 184    | 224  |  |  |
| Ste   | eel, Property c  | lass 5.6 and 5.8                 | N <sub>Rk,s</sub>                           | [kN]               | 18 (17)  | 29 (27) | 42      | 78      | 122     | 176     | 230    | 280  |  |  |
| Ste   | eel, Property c  | lass 8.8                         | N <sub>Rk,s</sub>                           | [kN]               | 29 (27)  | 46 (43) | 67      | 125     | 196     | 282     | 368    | 449  |  |  |
| Sta   | ainless steel A  | 2, A4 and HCR, class 50          | N <sub>Rk,s</sub>                           | [kN]               | 18       | 29      | 42      | 79      | 123     | 177     | 230    | 281  |  |  |
| Sta   | ainless steel A  | 2, A4 and HCR, class 70          | N <sub>Rk,s</sub>                           | [kN]               | 26       | 41      | 59      | 110     | 171     | 247     | -      | -    |  |  |
| Sta   | ainless steel A  | 4 and HCR, class 80              | N <sub>Rk,s</sub>                           | [kN]               | 29       | 46      | 67      | 126     | 196     | 282     | -      | -    |  |  |
| Cł    | naracteristic te | ension resistance, Partial facto | on resistance, Partial factor <sup>2)</sup> |                    |          |         |         |         |         |         |        |      |  |  |
| Ste   | eel, Property c  | lass 4.6 and 5.6                 | γMs,N                                       | [-]                |          |         |         | 2,0     | )       |         |        |      |  |  |
| Ste   | eel, Property c  | lass 4.8, 5.8 and 8.8            | Y <sub>Ms,N</sub>                           | [-]                |          |         |         | 1,5     | 5       |         |        |      |  |  |
| Sta   | ainless steel A  | 2, A4 and HCR, class 50          | Y <sub>Ms,N</sub>                           | [-]                |          |         |         | 2,8     | 6       |         |        |      |  |  |
| Sta   | ainless steel A  | 2, A4 and HCR, class 70          | Y <sub>Ms,N</sub>                           | [-]                |          |         |         | 1,8     | 7       | 7       |        |      |  |  |
| Sta   | ainless steel A  | 4 and HCR, class 80              | YMs,N                                       | [-]                |          |         |         | 1,6     | 5       |         |        |      |  |  |
| Cł    | naracteristic s  | hear resistance, Steel failure   | ')<br>I o                                   | 1                  |          |         |         |         |         |         | -      | -    |  |  |
| E     | Steel, Proper    | ty class 4.6 and 4.8             | V <sup>0</sup> Rk,s                         | [kN]               | 9 (8)    | 14 (13) | 20      | 38      | 59      | 85      | 110    | 135  |  |  |
| r ar  | Steel, Proper    | ty class 5.6 and 5.8             | V <sup>0</sup> Rk,s                         | [kN]               | 11 (10)  | 17 (16) | 25      | 47      | 74      | 106     | 138    | 168  |  |  |
| eve   | Steel, Proper    | ty class 8.8                     | V <sup>0</sup> Rk,s                         | [kN]               | 15 (13)  | 23 (21) | 34      | 63      | 98      | 141     | 184    | 224  |  |  |
| out   | Stainless stee   | el A2, A4 and HCR, class 50      | V <sup>0</sup> Rk,s                         | [kN]               | 9        | 15      | 21      | 39      | 61      | 88      | 115    | 140  |  |  |
| Vithe | Stainless stee   | el A2, A4 and HCR, class 70      | V <sup>0</sup> Rk,s                         | [kN]               | 13       | 20      | 30      | 55      | 86      | 124     | -      | -    |  |  |
| ^     | Stainless stee   | el A4 and HCR, class 80          | V <sup>0</sup> Rk,s                         | [kN]               | 15       | 23      | 34      | 63      | 98      | 141     | -      | -    |  |  |
|       | Steel, Proper    | ty class 4.6 and 4.8             | M <sup>0</sup> Rk,s                         | [Nm]               | 15 (13)  | 30 (27) | 52      | 133     | 260     | 449     | 666    | 900  |  |  |
| arm   | Steel, Proper    | ty class 5.6 and 5.8             | M <sup>0</sup> Rk,s                         | [Nm]               | 19 (16)  | 37 (33) | 65      | 166     | 324     | 560     | 833    | 1123 |  |  |
| ver   | Steel, Proper    | ty class 8.8                     | M <sup>0</sup> Rk,s                         | [Nm]               | 30 (26)  | 60 (53) | 105     | 266     | 519     | 896     | 1333   | 1797 |  |  |
| h le  | Stainless stee   | el A2, A4 and HCR, class 50      | M <sup>0</sup> Rk,s                         | [Nm]               | 19       | 37      | 66      | 167     | 325     | 561     | 832    | 1125 |  |  |
| Wit   | Stainless stee   | el A2, A4 and HCR, class 70      | M <sup>0</sup> Rk,s                         | [Nm]               | 26       | 52      | 92      | 232     | 454     | 784     | -      | -    |  |  |
|       | Stainless stee   | el A4 and HCR, class 80          | M <sup>0</sup> Rk,s                         | [Nm]               | 30       | 59      | 105     | 266     | 519     | 896     | -      | -    |  |  |
| Cł    | naracteristic s  | hear resistance, Partial factor  | 2)                                          | _                  |          |         |         |         |         |         |        |      |  |  |
| Ste   | eel, Property c  | lass 4.6 and 5.6                 | γ <sub>Ms,V</sub>                           | [-]                |          |         |         | 1,6     | 7       |         |        |      |  |  |
| Ste   | eel, Property c  | lass 4.8, 5.8 and 8.8            | Y <sub>Ms,V</sub>                           | [-]                |          |         |         | 1,25    |         |         |        |      |  |  |
| Sta   | ainless steel A  | 2, A4 and HCR, class 50          | Y <sub>Ms,V</sub>                           | [-]                | [-] 2,38 |         |         |         |         |         |        |      |  |  |
| Sta   | ainless steel A  | 2, A4 and HCR, class 70          | Y <sub>Ms,V</sub>                           | [-]                |          |         |         | 1,5     | 6       |         |        |      |  |  |
| Sta   | ainless steel A  | 4 and HCR, class 80              | Y <sub>Ms,V</sub>                           | [-]                |          |         |         | 1,3     | 3       |         |        |      |  |  |

<sup>1)</sup> Values are only valid for the given stress area A<sub>s</sub>. Values in brackets are valid for undersized threaded rods with smaller stress area A<sub>s</sub> for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
 <sup>2)</sup> in absence of national regulation

#### Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

#### Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1



| $\begin{array}{ c c c } \hline \textbf{Concrete cone failure} \\ \hline \textbf{Non-cracked concrete} & k_{ucr,N} & [-] & 11,0 \\ \hline \textbf{Cracked concrete} & k_{cr,N} & [-] & 7,7 \\ \hline \textbf{Edge distance} & \textbf{C}_{cr,N} & [mm] & 1,5  h_{ef} \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,N} & [mm] & 2  \textbf{C}_{cr,N} \\ \hline \textbf{Splitting} & & & \\ \hline \textbf{Edge distance} & \hline 1.0  h_{ef} \\ \hline \textbf{2},0 > h/h_{ef} > 1,3 & \textbf{C}_{cr,sp} & [mm] & \hline \textbf{2} \cdot h_{ef} \left( \textbf{2},5 - \frac{h}{h_{ef}} \right) \\ \hline \textbf{1}/h_{ef} \leq 1,3 & & \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & 2  \textbf{C}_{cr,sp} \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & \hline \textbf{2} \cdot h_{ef} \left( \textbf{2},5 - \frac{h}{h_{ef}} \right) \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & \hline \textbf{2} \cdot c_{cr,sp} \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & \hline \textbf{2} \cdot c_{cr,sp} \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & \hline \textbf{2} \cdot c_{cr,sp} \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & \hline \textbf{S} \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & \hline \textbf{S} \\ \hline \textbf{Axial distance} & \textbf{S}_{cr,sp} & [mm] & \hline \textbf{S} \\ \hline \textbf{Axial distance} & \hline \textbf{S}_{cr,sp} & [mm] & \hline \textbf{S} \\ \hline \textbf{Axial distance} & \hline \textbf{S}_{cr,sp} & [mm] & \hline \textbf{S} \\ \hline \textbf{S} \\ \hline \textbf{S} \\ \hline \textbf{Axial distance} & \hline \textbf{S}_{cr,sp} & [mm] & \hline \textbf{S} \\ \hline $ | Anchor size      |                               |                    |      | All Anchor types and sizes                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|--------------------|------|--------------------------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Concrete cone fa | ailure                        | 1                  |      |                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Non-cracked conc | rete                          | k <sub>ucr,N</sub> | [-]  | 11,0                                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cracked concrete |                               | k <sub>cr,N</sub>  | [-]  | 7,7                                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Edge distance    |                               | C <sub>cr,N</sub>  | [mm] | 1,5 h <sub>ef</sub>                                    |
| SplittingEdge distance $h/h_{ef} \ge 2,0$ $2,0 > h/h_{ef} > 1,3$ $c_{cr,sp}$ $[mm]$ $1,0 h_{ef}$ $h/h_{ef} \le 1,3$ $c_{cr,sp}$ $[mm]$ $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ Axial distance $s_{cr,sp}$ $[mm]$ $2 c_{cr,sp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Axial distance   |                               | s <sub>cr,N</sub>  | [mm] | 2 c <sub>cr,N</sub>                                    |
| Edge distance $h/h_{ef} \ge 2,0$<br>$2,0 > h/h_{ef} > 1,3$ $c_{cr,sp}$ [mm] $1,0 h_{ef}$<br>$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right)$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Splitting        |                               |                    |      |                                                        |
| Edge distance $2,0 > h/h_{ef} > 1,3$ $c_{cr,sp}$ [mm] $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ Axial distance $s_{cr,sp}$ [mm] $2 \cdot c_{cr,sp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | h/h <sub>ef</sub> ≥ 2,0       |                    |      | 1,0 h <sub>ef</sub>                                    |
| h/h <sub>ef</sub> $\leq$ 1,32,4 h <sub>ef</sub> Axial distances <sub>cr,sp</sub> [mm]2 c <sub>cr,sp</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Edge distance    | 2,0 > h/h <sub>ef</sub> > 1,3 | C <sub>cr,sp</sub> | [mm] | $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ |
| Axial distance s <sub>cr,sp</sub> [mm] 2 c <sub>cr,sp</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | h/h <sub>ef</sub> ≤ 1,3       |                    |      | 2,4 h <sub>ef</sub>                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Axial distance   | ·                             | s <sub>cr,sp</sub> | [mm] | 2 c <sub>cr.sp</sub>                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                               |                    |      |                                                        |

#### Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

**Performances** Characteristic values for Concrete cone failure and Splitting with all kind of action Annex C 2



| Table                                                                                                                | Table C3:         Characteristic values of tension loads under static and quasi-static action |                          |                      |                |                                          |      |      |        |         |          |                   |                  |         |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------|----------------------|----------------|------------------------------------------|------|------|--------|---------|----------|-------------------|------------------|---------|
| Ancho                                                                                                                | or siz                                                                                        | e threaded ro            | d                    |                |                                          | M8   | M10  | M12    | M16     | M20      | M24               | M27              | M30     |
| Steel f                                                                                                              | allur                                                                                         | e<br>tia tansian rasi    | stanaa               | No             | [LN]                                     |      |      | A • f. | u (or s | ee Tab   |                   |                  |         |
| Dortio                                                                                                               | fact                                                                                          |                          | Stance               | NRK,S          |                                          |      |      | ∕rs 'l |         |          |                   |                  |         |
| Comb                                                                                                                 | ined                                                                                          | pull-out and o           | concrete failure     | TMS,N          | [-]                                      |      |      |        | 566 12  |          |                   |                  |         |
| Chara                                                                                                                | cteris                                                                                        | tic bond resist          | ance in non-crack    | ked concrete C | 20/25                                    |      |      |        |         |          |                   |                  |         |
|                                                                                                                      | I:                                                                                            | 40°C/24°C                |                      |                |                                          | 10   | 12   | 12     | 12      | 12       | 11                | 10               | 9       |
| ange                                                                                                                 | II:                                                                                           | 80°C/50°C                | Dry, wet<br>concrete |                |                                          | 7,5  | 9    | 9      | 9       | 9        | 8,5               | 7,5              | 6,5     |
| nre ra                                                                                                               | III:                                                                                          | 120°C/72°C               |                      | -              | [] [] [] [] [] [] [] [] [] [] [] [] [] [ | 5,5  | 6,5  | 6,5    | 6,5     | 6,5      | 6,5               | 5,5              | 5,0     |
| berat                                                                                                                | I:                                                                                            | 40°C/24°C                |                      | ∫ 'Rk,ucr      |                                          | 7,5  | 8,5  | 8,5    | 8,5     |          |                   |                  |         |
| Temp                                                                                                                 | II:                                                                                           | 80°C/50°C                | flooded bore<br>hole |                |                                          | 5,5  | 6,5  | 6,5    | 6,5     | N A      | o Perfo<br>ssesse | ormanc<br>d (NPA | e<br>\) |
|                                                                                                                      | III:                                                                                          | 120°C/72°C               |                      |                |                                          | 4,0  | 5,0  | 5,0    | 5,0     |          |                   | ,                | ,       |
| Chara                                                                                                                | cteris                                                                                        | tic bond resist          | ance in cracked c    | oncrete C20/2  | 5                                        |      |      |        |         |          |                   |                  |         |
| I:         40°C/24°C         4,0         5,0         5,5         5,5                                                 |                                                                                               |                          |                      |                |                                          |      |      |        | 5,5     | 6,5      | 6,5               |                  |         |
| ange                                                                                                                 | II:                                                                                           | 80°C/50°C                | Dry, wet<br>concrete |                |                                          | 2,5  | 3,5  | 4,0    | 4,0     | 4,0      | 4,0               | 4,5              | 4,5     |
| iure r                                                                                                               | III:                                                                                          | 120°C/72°C               |                      |                | [NI/mm2]                                 | 2,0  | 2,5  | 3,0    | 3,0     | 3,0      | 3,0               | 3,5              | 3,5     |
| perat                                                                                                                | 1:                                                                                            | 40°C/24°C                |                      | •нк,cr         |                                          | 4,0  | 4,0  | 5,5    | 5,5     |          |                   |                  |         |
| Tem                                                                                                                  | E II: 80°C/50°C flooded bore hole                                                             |                          |                      |                |                                          | 2,5  | 3,0  | 4,0    | 4,0     | N<br>  A | e<br>A)           |                  |         |
|                                                                                                                      | III: 120°C/72°C                                                                               |                          |                      |                |                                          | 2,0  | 2,5  | 3,0    | 3,0     |          |                   |                  |         |
| Reduk                                                                                                                | tion                                                                                          | factor $\psi^0_{sus}$ in | cracked and non      | -cracked concr | ete C20/25                               | I    |      |        |         |          |                   |                  |         |
| ure                                                                                                                  | l:                                                                                            | 40°C/24°C                | Drv wet              |                |                                          |      |      |        | 0,      | 73       |                   |                  |         |
| perat<br>ange                                                                                                        | II:                                                                                           | 80°C/50°C                | concrete and         | $\psi^0_{sus}$ | [-]                                      |      |      |        | 0,      | 65       |                   |                  |         |
| Tem                                                                                                                  | :                                                                                             | 120°C/72°C               | hole                 |                |                                          | 0.57 |      |        |         |          |                   |                  |         |
|                                                                                                                      |                                                                                               |                          |                      | C25/30         |                                          |      |      |        | 1.      | 02       |                   |                  |         |
|                                                                                                                      |                                                                                               |                          |                      | C30/37         |                                          |      |      |        | 1,      | 04       |                   |                  |         |
| Increa                                                                                                               | sing                                                                                          | factors for con          | crete                | C35/45         |                                          |      |      |        | 1,      | 07       |                   |                  |         |
| Ψc                                                                                                                   |                                                                                               |                          |                      | C40/50         |                                          |      |      |        | 1,      | 08       |                   |                  |         |
|                                                                                                                      |                                                                                               |                          |                      | C45/55         |                                          |      |      |        | 1,      | 09       |                   |                  |         |
| Concr                                                                                                                | ete d                                                                                         | one failure              |                      | 050/60         |                                          |      |      |        | Ι,      | 10       |                   |                  |         |
| Releva                                                                                                               | ant p                                                                                         | arameter                 |                      |                |                                          |      |      |        | see Ta  | ble C2   |                   |                  |         |
| Splitti                                                                                                              | ng                                                                                            |                          |                      |                |                                          | 1    |      |        |         |          |                   |                  |         |
| Releva                                                                                                               | ant p                                                                                         | arameter                 |                      |                |                                          |      |      |        | see Ta  | ble C2   |                   |                  |         |
| Instal                                                                                                               | atio                                                                                          | n factor                 |                      | Ι              | 1                                        |      |      |        |         |          |                   |                  |         |
| for dry and wet concrete<br>Yinst [-] 1,0 1,2                                                                        |                                                                                               |                          |                      |                |                                          |      |      |        |         |          |                   |                  |         |
| for flooded bore hole                                                                                                |                                                                                               |                          |                      |                |                                          |      | 1    | ,4     |         |          | N                 | PA               |         |
|                                                                                                                      |                                                                                               |                          |                      |                |                                          |      |      |        |         |          |                   |                  |         |
| Inject                                                                                                               | ion S                                                                                         | System ESSVE             | ONE, ESSVE ON        | E-ICE for conc | rete                                     |      |      |        |         |          |                   |                  |         |
| Performances       Ann         Characteristic values of tension loads under static and quasi-static action       Ann |                                                                                               |                          |                      |                |                                          |      | Anne | x C 3  |         |          |                   |                  |         |



| Anchor size threaded rod                                                                                       |                                |       | M8                                                                             | M10 | M12     | M16                                | M20     | M24     | M27  | M30  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------|-------|--------------------------------------------------------------------------------|-----|---------|------------------------------------|---------|---------|------|------|
| Steel failure without lever arm                                                                                |                                | L     |                                                                                | 1   | 1       | 1                                  | 1       | 1       | I    |      |
| Characteristic shear resistance<br>Steel, strength class 4.6, 4.8, 5.6 and<br>5.8                              | V <sup>0</sup> Rk,s            | [kN]  |                                                                                |     | 0,6 •   | A <sub>s</sub> ∙f <sub>uk</sub>    | (or see | Table C | 1)   |      |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A2, A4 and HCR, all<br>classes | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  |                                                                                |     | 0,5 ·   | A <sub>s</sub> ∙f <sub>uk</sub>    | (or see | Table C | 1)   |      |
| Partial factor                                                                                                 | γ <sub>Ms,V</sub>              | [-]   |                                                                                |     |         | see                                | Table C | 1       |      |      |
| Ductility factor                                                                                               | k <sub>7</sub>                 | [-]   |                                                                                |     |         |                                    | 1,0     |         |      |      |
| Steel failure with lever arm                                                                                   | •                              | 1 1   |                                                                                |     |         |                                    |         |         |      |      |
| Characteristic bending moment                                                                                  | M <sup>0</sup> Rk,s            | [Nm]  |                                                                                |     | 1,2 • \ | W <sub>el</sub> ∙ f <sub>u</sub> ⊧ | (or see | Table C | ;1)  |      |
| Elastic section modulus                                                                                        | W <sub>el</sub>                | [mm³] | 31                                                                             | 62  | 109     | 277                                | 541     | 935     | 1387 | 1874 |
| Partial factor                                                                                                 | γ <sub>Ms,V</sub>              | [-]   |                                                                                |     |         | see                                | Table C | 1       |      |      |
| Concrete pry-out failure                                                                                       | •                              | •     |                                                                                |     |         |                                    |         |         |      |      |
| Factor                                                                                                         | k <sub>8</sub>                 | [-]   |                                                                                |     |         |                                    | 2,0     |         |      |      |
| Installation factor                                                                                            | γinst                          | [-]   |                                                                                |     |         |                                    | 1,0     |         |      |      |
| Concrete edge failure                                                                                          |                                |       |                                                                                |     |         |                                    |         |         |      |      |
| Effective length of fastener                                                                                   | I <sub>f</sub>                 | [mm]  | [mm] min(h <sub>ef</sub> ; 12 · d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300mr |     |         |                                    |         |         |      |      |
| Outside diameter of fastener                                                                                   | d <sub>nom</sub>               | [mm]  | 8                                                                              | 10  | 12      | 16                                 | 20      | 24      | 27   | 30   |
| Installation factor                                                                                            | γ <sub>inst</sub>              | [-]   |                                                                                |     |         |                                    | 1,0     |         |      |      |

| Injection Systen | I ESSVE | ONE, | ESSVE | ONE-ICE | for concrete |
|------------------|---------|------|-------|---------|--------------|
|------------------|---------|------|-------|---------|--------------|

Performances

Characteristic values of shear loads under static and quasi-static action

Annex C 4



| Table C5:         Characteristic values of tension loads under static and quasi-static action |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------------|-------------|--------------|--------------|--------------------|---------|--|--|--|--|
| Anchor size internal threade                                                                  | d anchor rods                                                                                                                              |                     |                      | IG-M6             | IG-M8       | IG-M10       | IG-M12       | IG-M16             | IG-M20  |  |  |  |  |
| Steel failure <sup>1)</sup>                                                                   |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
| Characteristic tension resistand                                                              | ce, 5.8                                                                                                                                    | N <sub>Rk,s</sub>   | [kN]                 | 10                | 17          | 29           | 42           | 76                 | 123     |  |  |  |  |
| Steel, strength class                                                                         | 8.8                                                                                                                                        | N <sub>Rk.s</sub>   | [kN]                 | 16                | 27          | 46           | 67           | 121                | 196     |  |  |  |  |
| Partial factor, strength class 5.                                                             | 8 and 8.8                                                                                                                                  | γMe N               | [-]                  |                   | 1           | 1            | .5           |                    |         |  |  |  |  |
| Characteristic tension resistant                                                              | ce. Stainless                                                                                                                              | NI NI               |                      |                   |             |              | ,-           |                    | 101     |  |  |  |  |
| Steel A4 and HCR, Strength cl                                                                 | ass 70 <sup>2)</sup>                                                                                                                       | <sup>IN</sup> Rk,s  | [KN]                 | 14                | 26          | 41           | 59           | 110                | 124     |  |  |  |  |
| Partial factor                                                                                |                                                                                                                                            | γ <sub>Ms,N</sub>   | [-]                  |                   |             | 1,87         |              |                    | 2,86    |  |  |  |  |
| Combined pull-out and conc                                                                    | rete cone failu                                                                                                                            | re                  |                      |                   |             |              |              |                    |         |  |  |  |  |
| Characteristic bond resistance                                                                | in non-cracked                                                                                                                             | concret             | e C20/25             |                   |             |              |              |                    |         |  |  |  |  |
| <u>φ</u> <u>I: 40°C/24°C</u>                                                                  | Drv wet                                                                                                                                    |                     |                      | 12                | 12          | 12           | 12           | 11                 | 9       |  |  |  |  |
| II: 80°C/50°C                                                                                 | concrete                                                                                                                                   |                     |                      | 9                 | 9           | 9            | 9            | 8,5                | 6,5     |  |  |  |  |
| 111: 120°C//2°C                                                                               |                                                                                                                                            | <sup>τ</sup> Bk.ucr | [N/mm <sup>2</sup> ] | 6,5               | 6,5         | 6,5          | 6,5          | 6,5                | 5,0     |  |  |  |  |
|                                                                                               | flooded bore                                                                                                                               |                     |                      | 8,5               | 8,5         | 8,5          | No Perf      | ormance A          | ssessed |  |  |  |  |
| $H = \frac{11.80 \cdot C/50 \cdot C}{110 \cdot 120 \cdot C/22 \cdot C}$                       | hole                                                                                                                                       |                     |                      | 5,0<br>5,0        | 6,5<br>5.0  | 6,5<br>5.0   |              | (NPA)              |         |  |  |  |  |
| Characteristic bond resistance in cracked concrete C20/25                                     |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
| I. 40°C/24°C                                                                                  |                                                                                                                                            |                     | .0/23                | 5.0               | 5.5         | 55           | 55           | 5.5                | 6.5     |  |  |  |  |
| <u>e</u> <u>II: 80°C/50°C</u>                                                                 | Dry, wet                                                                                                                                   |                     |                      | 3.5               | 4.0         | 4.0          | 4.0          | 5,5 5,5<br>4.0 4,0 |         |  |  |  |  |
| E B Ⅲ: 120°C/72°C                                                                             | concrete                                                                                                                                   |                     |                      | 2.5               | 3.0         | 3.0          | 3.0          | 3.5                |         |  |  |  |  |
| ⊕ <u>i</u> <u>i</u> : 40°C/24°C                                                               | <sup>6</sup> / <sub>6</sub> III: 120°C/72°C <sup>τ</sup> <sub>Rk,cr</sub> [N/mm <sup>2</sup> ] 2,5 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
| E     II:     80°C/50°C     flooded bore       II:     80°C/50°C     hole                     |                                                                                                                                            |                     |                      |                   |             |              | ormance A    | ssessed            |         |  |  |  |  |
| ⊢ <u>III: 120°C/72°C</u>                                                                      | noie                                                                                                                                       |                     |                      | 2,5 3,0 3,0 (NPA) |             |              |              |                    |         |  |  |  |  |
| Reduktion factor $\psi^0_{SUS}$ in crac                                                       | ked and non-cr                                                                                                                             | acked c             | oncrete C            | 20/25             |             |              |              |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            |                     |                      | 0.70              |             |              |              |                    |         |  |  |  |  |
|                                                                                               | Dry, wet                                                                                                                                   |                     |                      |                   |             | 0,           | 73           |                    |         |  |  |  |  |
| ຍັຊີ II: 80°C/50°C                                                                            | concrete and                                                                                                                               | ψ <sup>0</sup> sus  | [-]                  |                   |             | 0,           | 65           |                    |         |  |  |  |  |
| E <u>₩</u>                                                                                    | hole                                                                                                                                       |                     |                      |                   |             | 0            | 57           |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            |                     | 5/20                 |                   |             |              | 02           |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            | C3                  | 0/37                 |                   |             | 1,           | 02           |                    |         |  |  |  |  |
| Increasing factors for concrete                                                               |                                                                                                                                            | C3                  | 5/45                 |                   |             | 1.           | 07           |                    |         |  |  |  |  |
| Ψc                                                                                            |                                                                                                                                            | C4                  | 0/50                 |                   |             | 1,           | 08           |                    |         |  |  |  |  |
| -                                                                                             |                                                                                                                                            | C4                  | 5/55                 |                   |             | 1,           | 09           |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            | C5                  | 0/60                 |                   |             | 1,           | 10           |                    |         |  |  |  |  |
| Concrete cone failure                                                                         |                                                                                                                                            |                     |                      |                   |             | <del>_</del> |              |                    |         |  |  |  |  |
| Relevant parameter                                                                            |                                                                                                                                            |                     |                      |                   |             | see la       | able C2      |                    |         |  |  |  |  |
| Bolovant parameter                                                                            |                                                                                                                                            |                     |                      |                   |             | 500 Tr       | blo C2       |                    |         |  |  |  |  |
| Installation factor                                                                           |                                                                                                                                            |                     |                      |                   |             | 366 12       |              |                    |         |  |  |  |  |
| for dry and wet concrete                                                                      |                                                                                                                                            |                     |                      |                   |             | 1            | ,2           |                    |         |  |  |  |  |
| for flooded bore hole                                                                         |                                                                                                                                            | <sup>γ</sup> inst   | [-]                  |                   | 1,4         |              |              | NPA                |         |  |  |  |  |
| <sup>1)</sup> Fastenings (incl. nut and was                                                   | her) must compl                                                                                                                            | y with th           | e appropr            | iate materi       | al and prop | perty class  | of the inter | nal threade        | d rod.  |  |  |  |  |
| The characteristic tension res                                                                | istance for steel                                                                                                                          | failure is          | s valid for          | the interna       | I threaded  | rod and the  | e fastening  | element.           |         |  |  |  |  |
| For IG-M20 strength class 50                                                                  | is valid                                                                                                                                   |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
|                                                                                               |                                                                                                                                            |                     |                      |                   |             |              |              |                    |         |  |  |  |  |
| Injection System ESSVE ONE                                                                    | , ESSVE ONE-I                                                                                                                              | CE for c            | oncrete              |                   |             |              |              |                    |         |  |  |  |  |
|                                                                                               | -                                                                                                                                          | _                   |                      |                   |             |              |              | Annov              | ` 5     |  |  |  |  |
| Performances                                                                                  |                                                                                                                                            |                     |                      |                   |             |              |              |                    | , ,     |  |  |  |  |
| Characteristic values of tension                                                              | loads under sta                                                                                                                            | tic and q           | uasi-statio          | c action          |             |              |              |                    |         |  |  |  |  |



| Table C6:         Characteristic values of shear loads under static and quasi-static action                                             |                                  |                     |                      |                            |            |                           |                             |              |                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|----------------------|----------------------------|------------|---------------------------|-----------------------------|--------------|----------------------------------|--|
| Anchor size for internal threade                                                                                                        | ed ancho                         | or rods             |                      | IG-M6                      | IG-M8      | IG-M10                    | IG-M12                      | IG-M16       | IG-M20                           |  |
| Steel failure without lever arm <sup>1)</sup>                                                                                           |                                  |                     |                      |                            |            |                           |                             |              |                                  |  |
| Characteristic shear resistance,                                                                                                        | 5.8                              | V <sup>0</sup> Rk,s | [kN]                 | 5                          | 9          | 15                        | 21                          | 38           | 61                               |  |
| Steel, strength class                                                                                                                   | 8.8                              | V <sup>0</sup> Rk,s | [kN]                 | 8                          | 14         | 23                        | 34                          | 60           | 98                               |  |
| Partial factor, strength class 5.8 a                                                                                                    | nd 8.8                           | γ <sub>Ms,V</sub>   | [-]                  |                            |            |                           | 1,25                        |              |                                  |  |
| Characteristic shear resistance,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>                                      |                                  | V <sup>0</sup> Rk,s | [kN]                 | 7                          | 13         | 20                        | 30                          | 55           | 40                               |  |
| Partial factor                                                                                                                          |                                  | γ <sub>Ms,V</sub>   | [-]                  |                            |            | 1,56                      |                             |              | 2,38                             |  |
| Ductility factor                                                                                                                        |                                  | k <sub>7</sub>      | [-]                  |                            |            |                           | 1,0                         |              |                                  |  |
| Steel failure with lever arm <sup>1)</sup>                                                                                              |                                  |                     |                      |                            |            |                           |                             |              |                                  |  |
| Characteristic bending moment,                                                                                                          | 5.8                              | M <sup>0</sup> Rk,s | [Nm]                 | 8                          | 19         | 37                        | 66                          | 167          | 325                              |  |
| Steel, strength class                                                                                                                   | 8.8                              | M <sup>0</sup> Rk,s | [Nm]                 | 12                         | 30         | 60                        | 105                         | 267          | 519                              |  |
| Partial factor, strength class 5.8 a                                                                                                    | nd 8.8                           | γ <sub>Ms,V</sub>   | [-]                  |                            |            |                           | 1,25                        |              |                                  |  |
| Characteristic bending moment,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>                                        |                                  | M <sup>0</sup> Rk,s | [Nm]                 | 11                         | 26         | 52                        | 92                          | 233          | 456                              |  |
| Partial factor                                                                                                                          |                                  | γ <sub>Ms,V</sub>   | [-]                  |                            | 1,56       |                           |                             |              |                                  |  |
| Concrete pry-out failure                                                                                                                |                                  |                     |                      |                            |            |                           |                             |              |                                  |  |
| Factor                                                                                                                                  |                                  | k <sub>8</sub>      | [-]                  | 2,0                        |            |                           |                             |              |                                  |  |
| Installation factor                                                                                                                     |                                  | γ <sub>inst</sub>   | [-]                  | 1,0                        |            |                           |                             |              |                                  |  |
| Concrete edge failure                                                                                                                   |                                  |                     |                      |                            |            |                           |                             |              |                                  |  |
| Effective length of fastener                                                                                                            |                                  | I <sub>f</sub>      | [mm]                 |                            | min        | (h <sub>ef</sub> ; 12 • d | nom)                        |              | min<br>(h <sub>ef</sub> ; 300mm) |  |
| Outside diameter of fastener                                                                                                            |                                  | d <sub>nom</sub>    | [mm]                 | 10                         | 12         | 16                        | 20                          | 24           | 30                               |  |
| Installation factor                                                                                                                     |                                  | γ <sub>inst</sub>   | [-]                  |                            |            |                           | 1,0                         |              |                                  |  |
| <sup>1)</sup> Fastenings (incl. nut and washer<br>The characteristic tension resista<br><sup>2)</sup> For IG-M20 strength class 50 is v | ) must cc<br>ance for s<br>valid | omply with t        | the appr<br>is valid | opriate ma<br>for the inte | terial and | property cl.              | ass of the i<br>d the faste | nternal thro | eaded rod.<br>int.               |  |

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

Annex C 6



| Table C7:         Characteristic values of tension loads under static and quasi-static action                    |                             |                     |                                        |        |           |      |      |                   |      |          |        |          |  |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|----------------------------------------|--------|-----------|------|------|-------------------|------|----------|--------|----------|--|--|
| Anchor size reinforcing                                                                                          | bar                         |                     |                                        | Ø 8    | Ø 10      | Ø 12 | Ø 14 | Ø 16              | Ø 20 | Ø 25     | Ø 28   | Ø 32     |  |  |
| Characteristic tension resi                                                                                      | stance                      | Noka                | [kN]                                   |        |           |      |      | م• أسلاً          | 1)   |          |        |          |  |  |
| Cross section area                                                                                               | Stariee                     | A A                 |                                        | 50     | 70        | 112  | 154  | 201               | 214  | 101      | 616    | 804      |  |  |
| Dortial factor                                                                                                   |                             | /`S                 | [[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] | - 50   | 19        | 115  | 134  | 1 4 <sup>2)</sup> | 514  | 491      | 010    | 004      |  |  |
| Combined pull out and a                                                                                          | oporata failu               | <sup>Y</sup> Ms,N   | [-]                                    |        |           |      |      | 1,4               |      |          |        |          |  |  |
| Combined pull-out and C                                                                                          |                             | ne<br>rackod conc   | rata C20/2                             | 5      |           |      |      |                   |      |          |        |          |  |  |
|                                                                                                                  |                             |                     |                                        | 10     | 12        | 12   | 12   | 12                | 12   | 11       | 10     | 8.5      |  |  |
| $\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$                                             | Dry, wet                    |                     |                                        | 7.5    | 9         | 9    | 9    | 9                 | 9    | 8.0      | 7.0    | 6.0      |  |  |
| te 8 III: 120°C/72°C                                                                                             | concrete                    | -                   | [N] / 21                               | 5,5    | 6,5       | 6,5  | 6,5  | 6,5               | 6,5  | 6,0      | 5,0    | 4,5      |  |  |
| କୁ ଜୁ <u>ା: 40°C/24°C</u>                                                                                        | floodod                     | <sup>1</sup> Rk,ucr | [IN/mm²]                               | 7,5    | 8,5       | 8,5  | 8,5  | 8,5               |      | lo Porf  | ormono |          |  |  |
| ୍ରା <u>II: 80°C/50°C</u>                                                                                         | bore hole                   |                     |                                        | 5,5    | 6,5       | 6,5  | 6,5  | 6,5               |      |          | d (NP  | .e<br>4) |  |  |
| III: 120°C/72°C                                                                                                  |                             |                     |                                        | 4,0    | 5,0       | 5,0  | 5,0  | 5,0               |      |          |        | 9        |  |  |
| Characteristic bond resista                                                                                      | ance in cracke              | ed concrete         | C20/25                                 | 1.0    | 5.0       |      |      |                   |      |          | 0.5    | 0.5      |  |  |
| $\Phi = \frac{1: 40°C/24°C}{1! + 80°C/50°C}$                                                                     | Dry, wet                    |                     |                                        | 4,0    | 5,0       | 5,5  | 5,5  | 5,5               | 5,5  | 5,5      | 6,5    | 6,5      |  |  |
|                                                                                                                  | concrete                    |                     |                                        | 2,5    | 3,5<br>25 | 4,0  | 4,0  | 4,0               | 4,0  | 4,0      | 4,5    | 4,5      |  |  |
| 1. 40°C/24°C                                                                                                     |                             | <sup>τ</sup> Rk,cr  | [N/mm <sup>2</sup> ]                   | 4.0    | 4.0       | 5.5  | 5.5  | 5.5               | 0,0  | 0,0      | 0,0    | 0,0      |  |  |
| E E II: 80°C/50°C                                                                                                | flooded                     |                     |                                        | 2.5    | 3.0       | 4.0  | 4,0  | 4.0               |      | lo Perfe | ormanc | e        |  |  |
| ⊢ III: 120°C/72°C                                                                                                | bore noie                   |                     |                                        | 2,0    | 2,5       | 3,0  | 3,0  | 3,0               |      | ssesse   | a (NP/ | 4)       |  |  |
| Reduktion factor $\psi^0_{SUS}$ in                                                                               | cracked and                 | non-cracked         | l concrete                             | C20/25 | 5         |      |      |                   | •    |          |        |          |  |  |
| l: 40°C/24°C                                                                                                     | Dry, wet                    |                     |                                        |        |           |      |      | 0,73              |      |          |        |          |  |  |
| e e e e e e e e e e e e e e e e e e e                                                                            | and                         | $\Psi^0$ sus        | [-]                                    | 0,65   |           |      |      |                   |      |          |        |          |  |  |
| □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                                                            | bore hole                   |                     |                                        |        |           |      |      | 0,57              |      |          |        |          |  |  |
|                                                                                                                  |                             | C25/                | 1,02                                   |        |           |      |      |                   |      |          |        |          |  |  |
|                                                                                                                  |                             | C30/                |                                        |        |           |      | 1,04 |                   |      |          |        |          |  |  |
| Increasing factors for cond                                                                                      | crete                       | C35/                |                                        |        |           |      | 1,07 |                   |      |          |        |          |  |  |
| Ψc                                                                                                               |                             | C40/                | 50                                     |        |           |      |      | 1,08              |      |          |        |          |  |  |
|                                                                                                                  |                             | C50/                | 55<br>/60                              | 1,09   |           |      |      |                   |      |          |        |          |  |  |
| Concrete cone failure                                                                                            |                             | 000/                | 00                                     |        |           |      |      | 1,10              |      |          |        |          |  |  |
| Relevant parameter                                                                                               |                             |                     |                                        |        |           |      | see  | Table             | C2   |          |        |          |  |  |
| Splitting                                                                                                        |                             |                     |                                        | I      |           |      |      |                   |      |          |        |          |  |  |
| Relevant parameter                                                                                               |                             |                     |                                        |        |           |      | see  | Table             | C2   |          |        |          |  |  |
| Installation factor                                                                                              |                             |                     |                                        |        |           |      |      |                   |      |          |        |          |  |  |
| for dry and wet concrete                                                                                         |                             |                     | <b>1</b> 1                             | 1,2    |           |      |      | 1                 | ,2   |          |        |          |  |  |
| for flooded bore hole                                                                                            |                             | <sup>r</sup> inst   | [-]                                    |        |           | 1,4  |      |                   |      | N        | PA     |          |  |  |
| <ol> <li>f<sub>uk</sub> shall be taken from th</li> <li>in absence of national re</li> </ol>                     | e specificatior<br>gulation | is of reinforci     | ng bars                                |        |           |      |      |                   |      |          |        |          |  |  |
| Injection System ESSVE                                                                                           | ONE, ESSVE                  | ONE-ICE fo          | r concrete                             | )      |           |      |      |                   |      | ٨        | v 0 7  |          |  |  |
| Performances       Annex C 7         Characteristic values of tension loads under static and quasi-static action |                             |                     |                                        |        |           |      |      |                   |      |          |        |          |  |  |



| Table C8:         Characteristic value               | Cable C8:       Characteristic values of shear loads under static and quasi-static action |           |    |      |                       |                      |                    |                    |      |                       |      |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------|----|------|-----------------------|----------------------|--------------------|--------------------|------|-----------------------|------|--|
| Anchor size reinforcing bar                          |                                                                                           |           | Ø8 | Ø 10 | Ø 12                  | Ø 14                 | Ø 16               | Ø 20               | Ø 25 | Ø 28                  | Ø 32 |  |
| Steel failure without lever arm                      |                                                                                           |           |    |      |                       |                      |                    |                    |      |                       |      |  |
| Characteristic shear resistance                      | V <sup>0</sup> Rk,s                                                                       | [kN]      |    |      |                       | 0,5                  | 0∙A <sub>s</sub> • | f <sub>uk</sub> 1) |      |                       |      |  |
| Cross section area                                   | A <sub>s</sub>                                                                            | [mm²]     | 50 | 79   | 113                   | 154                  | 201                | 314                | 491  | 616                   | 804  |  |
| Partial factor                                       | γMs,V                                                                                     | [-]       |    |      |                       |                      | 1,5 <sup>2)</sup>  |                    |      |                       |      |  |
| Ductility factor                                     | k <sub>7</sub>                                                                            | [-]       |    |      |                       |                      | 1,0                |                    |      |                       |      |  |
| Steel failure with lever arm                         |                                                                                           |           |    |      |                       |                      |                    |                    |      |                       |      |  |
| Characteristic bending moment                        | M <sup>0</sup> <sub>Rk,s</sub>                                                            | [Nm]      |    |      |                       | 1.2                  | ۰w <sub>el</sub> ۰ | f <sub>uk</sub> 1) |      |                       |      |  |
| Elastic section modulus                              | W <sub>el</sub>                                                                           | [mm³]     | 50 | 98   | 170                   | 269                  | 402                | 785                | 1534 | 2155                  | 3217 |  |
| Partial factor                                       | γ <sub>Ms,V</sub>                                                                         | [-]       |    |      |                       |                      | 1,5 <sup>2)</sup>  |                    |      |                       |      |  |
| Concrete pry-out failure                             |                                                                                           |           |    |      |                       |                      |                    |                    |      |                       |      |  |
| Factor                                               | k <sub>8</sub>                                                                            | [-]       |    |      |                       |                      | 2,0                |                    |      |                       |      |  |
| Installation factor                                  | γ <sub>inst</sub>                                                                         | [-]       |    |      |                       |                      | 1,0                |                    |      |                       |      |  |
| Concrete edge failure                                |                                                                                           |           |    |      |                       |                      |                    |                    |      |                       |      |  |
| Effective length of fastener                         | ۱ <sub>f</sub>                                                                            | [mm]      |    | miı  | n(h <sub>ef</sub> ; 1 | 2 • d <sub>noi</sub> | m)                 |                    | min( | h <sub>ef</sub> ; 300 | mm)  |  |
| Outside diameter of fastener                         | d <sub>nom</sub>                                                                          | [mm]      | 8  | 10   | 12                    | 14                   | 16                 | 20                 | 25   | 28                    | 32   |  |
| Installation factor                                  | γinst                                                                                     | [-]       |    |      |                       |                      | 1,0                |                    |      |                       |      |  |
| <sup>1)</sup> f shall be taken from the apositiontic | a of roinfor                                                                              | aina hara |    |      |                       |                      |                    |                    |      |                       |      |  |

 $^{1)}$   $f_{uk}$  shall be taken from the specifications of reinforcing bars  $^{2)}$  in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

Annex C 8

Performances Characteristic values of shear loads under static and quasi-static action



| Table C9: Dis                                                        | splacement                                | s under tension load           | <sup>1)</sup> (thread | ded rod | )     |       |       |       |       |       |
|----------------------------------------------------------------------|-------------------------------------------|--------------------------------|-----------------------|---------|-------|-------|-------|-------|-------|-------|
| Anchor size thread                                                   | led rod                                   |                                | M8                    | M10     | M12   | M16   | M20   | M24   | M27   | M30   |
| Non-cracked concre                                                   | ete C20/25 u                              | nder static and quasi-         | -static ac            | tion    |       |       |       |       |       |       |
| Temperature range                                                    | $\delta_{N0}$ -factor                     | [mm/(N/mm²)]                   | 0,021                 | 0,023   | 0,026 | 0,031 | 0,036 | 0,041 | 0,045 | 0,049 |
| I: 40°C/24°C                                                         | $\delta_{N\infty}$ -factor                | [mm/(N/mm <sup>2</sup> )]      | 0,030                 | 0,033   | 0,037 | 0,045 | 0,052 | 0,060 | 0,065 | 0,071 |
| Temperature range                                                    | $\delta_{N0}$ -factor                     | [mm/(N/mm²)]                   | 0,050                 | 0,056   | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |
| II: 80°C/50°C                                                        | $\delta_{N\infty}\text{-factor}$          | [mm/(N/mm <sup>2</sup> )]      | 0,072                 | 0,081   | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |
| Temperature range                                                    | $\delta_{N0}$ -factor                     | [mm/(N/mm²)]                   | 0,050                 | 0,056   | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |
| III: 120°C/72°C                                                      | $\delta_{N\infty}$ -factor                | [mm/(N/mm²)]                   | 0,072                 | 0,081   | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |
| Cracked concrete C                                                   | 20/25 under                               | r static and quasi-stati       | ic action             |         |       |       |       |       |       |       |
| Temperature range                                                    | $\delta_{N0}$ -factor                     | [mm/(N/mm²)]                   | 0,0                   | )90     |       |       | 0,0   | )70   |       |       |
| I: 40°C/24°C                                                         | $\delta_{N\infty}$ -factor                | [mm/(N/mm²)]                   | 0,-                   | 05      |       |       | 0,1   | 05    |       |       |
| Temperature range                                                    | $\delta_{N0}$ -factor                     | [mm/(N/mm²)]                   | 0,2                   | 219     |       |       | 0,1   | 70    |       |       |
| II: 80°C/50°C                                                        | $\delta_{N\infty}\text{-factor}$          | [mm/(N/mm²)]                   | 0,2                   | 255     |       |       | 0,2   | 245   |       |       |
| Temperature range                                                    | $\delta_{\text{N0}}\text{-}\text{factor}$ | [mm/(N/mm <sup>2</sup> )]      | 0,2                   | 219     |       |       | 0,1   | 70    |       |       |
| III: 120°C/72°C                                                      | $\delta_{N\infty}\text{-}factor$          | [mm/(N/mm <sup>2</sup> )]      | 0,2                   | 255     |       |       | 0,2   | 245   |       |       |
| <sup>1)</sup> Calculation of the $\delta_{N0} = \delta_{N0}$ -factor | e displacemer<br>· τ;                     | nt<br>τ: action bond stress fo | r tension             |         |       |       |       |       |       |       |

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \ \cdot \tau;$ 

#### Displacements under shear load<sup>1)</sup> (threaded rod) Table C10:

| Anchor size threa                                                                                                       | ded rod                        |                            | M8        | M10   | M12  | M16  | M20  | M24        | M27     | M30      |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|-----------|-------|------|------|------|------------|---------|----------|
| Non-cracked conc                                                                                                        | rete C20/25 u                  | Inder static and quasi-    | static ad | ction |      |      |      |            |         |          |
| All temperature                                                                                                         | $\delta_{V0}$ -factor          | [mm/kN]                    | 0,06      | 0,06  | 0,05 | 0,04 | 0,04 | 0,03       | 0,03    | 0,03     |
| ranges                                                                                                                  | $\delta_{V\infty}$ -factor     | [mm/kN]                    | 0,09      | 0,08  | 0,08 | 0,06 | 0,06 | 0,05       | 0,05    | 0,05     |
| Cracked concrete                                                                                                        | C20/25 under                   | r static and quasi-stati   | c action  |       |      |      |      |            |         |          |
| All temperature                                                                                                         | $\delta_{V0}$ -factor          | [mm/kN]                    | 0,12      | 0,12  | 0,11 | 0,10 | 0,09 | 0,08       | 0,08    | 0,07     |
| ranges                                                                                                                  | $\delta_{V\infty}$ -factor     | [mm/kN]                    | 0,18      | 0,18  | 0,17 | 0,15 | 0,14 | 0,13       | 0,12    | 0,10     |
| <sup>()</sup> Calculation of th<br>$\delta_{V0} = \delta_{V0}$ -factor<br>$\delta_{V\infty} = \delta_{V\infty}$ -factor | ne displacemen<br>· V;<br>· V; | nt<br>V: action shear load |           |       |      |      |      |            |         |          |
| Injection System E                                                                                                      | SSVE ONE, E                    | SSVE ONE-ICE for cond      | crete     |       |      |      |      | <b>A</b> - |         | <b>`</b> |
| Performances<br>Displacements (thre                                                                                     | aded rods)                     |                            |           |       |      |      |      | Ar         | mex C s | 3        |



| $ \begin{array}{c c c c c c c c c } \mbox{Anchor size Interval threaded anchor rod} & IG-M6 & IG-M8 & IG-M10 & IG-M12 & IG-M16 & IG-M20 \\ \hline Anchor size Interval concrete C20/25 under static and quasi-static action $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table C11:       Displacements under tension load <sup>1)</sup> (Internal threaded anchor rod) |                                                                      |                           |             |       |       |       |       |       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|-------------|-------|-------|-------|-------|-------|--|--|--|
| Non-cracked concrete C20/25 under static and quasi-static action           Temperature range<br>1: 40°C/24°C $\delta_{N0}$ -factor         [mm/(N/mm^2)]         0,023         0,026         0,031         0,036         0,041         0,049           Temperature range<br>11: 80°C/50°C $\delta_{N0}$ -factor         [mm/(N/mm2)]         0,033         0,037         0,045         0,052         0,060         0,071           Temperature range<br>11: 80°C/50°C $\delta_{N0}$ -factor         [mm/(N/mm2)]         0,056         0,063         0,075         0,088         0,100         0,119           Temperature range<br>11: 120°C/72°C $\delta_{N0}$ -factor         [mm/(N/mm2)]         0,056         0,063         0,075         0,088         0,100         0,119           Temperature range<br>11: 120°C/72°C $\delta_{N0}$ -factor         [mm/(N/mm2)]         0,056         0,063         0,075         0,088         0,100         0,119           One factor         [mm/(N/mm2)]         0,056         0,063         0,075         0,088         0,100         0,172           One factor         [mm/(N/mm2)]         0,056         0,063         0,075         0,088         0,100         0,172           Cacked concrete C2/25 under static and quasi-static action <th co<="" th=""><th colspan="10">Anchor size Internal threaded anchor rodIG-M6IG-M8IG-M10IG-M12IG-M16</th></th> | <th colspan="10">Anchor size Internal threaded anchor rodIG-M6IG-M8IG-M10IG-M12IG-M16</th>     | Anchor size Internal threaded anchor rodIG-M6IG-M8IG-M10IG-M12IG-M16 |                           |             |       |       |       |       |       |  |  |  |
| $\begin{array}{c c c c c c c c c } \hline Temperature range & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Non-cracked concrete C20/25 under static and quasi-static action                               |                                                                      |                           |             |       |       |       |       |       |  |  |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temperature range                                                                              | $\delta_{N0}$ -factor                                                | [mm/(N/mm <sup>2</sup> )] | 0,023       | 0,026 | 0,031 | 0,036 | 0,041 | 0,049 |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I: 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor                                           | [mm/(N/mm <sup>2</sup> )] | 0,033       | 0,037 | 0,045 | 0,052 | 0,060 | 0,071 |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature range                                                                              | $\delta_{N0}$ -factor                                                | [mm/(N/mm <sup>2</sup> )] | 0,056       | 0,063 | 0,075 | 0,088 | 0,100 | 0,119 |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | II: 80°C/50°C                                                                                  | $\delta_{N\infty}$ -factor                                           | [mm/(N/mm <sup>2</sup> )] | 0,081       | 0,090 | 0,108 | 0,127 | 0,145 | 0,172 |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature range                                                                              | $\delta_{N0}$ -factor                                                | [mm/(N/mm <sup>2</sup> )] | 0,056       | 0,063 | 0,075 | 0,088 | 0,100 | 0,119 |  |  |  |
| $ \begin{array}{ c c c c } \hline Cracked concrete C20/25 under static and quasi-static action \\ \hline Temperature range I: 40°C/24°C & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | III: 120°C/72°C                                                                                | $\delta_{N\infty}$ -factor                                           | [mm/(N/mm <sup>2</sup> )] | 0,081       | 0,090 | 0,108 | 0,127 | 0,145 | 0,172 |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cracked concrete C                                                                             | 20/25 under sta                                                      | tic and quasi-st          | atic action |       |       |       |       |       |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temperature range                                                                              | $\delta_{N0}$ -factor                                                | [mm/(N/mm <sup>2</sup> )] | 0,090       |       |       | 0,070 |       |       |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I: 40°C/24°C                                                                                   | $\delta_{N\infty}$ -factor                                           | [mm/(N/mm²)]              | 0,105       |       |       | 0,105 |       |       |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature range                                                                              | $\delta_{N0}$ -factor                                                | [mm/(N/mm <sup>2</sup> )] | 0,219       |       |       | 0,170 |       |       |  |  |  |
| Temperature range<br>III: 120°C/72°C         δ <sub>N0</sub> -factor         [mm/(N/mm²)]         0,219         0,170           0,255         0,245         0,245         0,245         0,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | II: 80°C/50°C                                                                                  | $\delta_{N\infty}$ -factor                                           | [mm/(N/mm <sup>2</sup> )] | 0,255       |       |       | 0,245 |       |       |  |  |  |
| III: 120°C/72°C $\delta_{N^{\infty}}$ factor [mm/(N/mm <sup>2</sup> )] 0,255 0,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temperature range                                                                              | $\delta_{N0}$ -factor                                                | [mm/(N/mm <sup>2</sup> )] | 0,219       |       |       | 0,170 |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | III: 120°C/72°C                                                                                | $\delta_{N\infty}$ -factor                                           | [mm/(N/mm <sup>2</sup> )] | 0,255       |       |       | 0,245 |       |       |  |  |  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \cdot \tau; \qquad \tau: \text{ action bond stress for tension}$ 

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$ 

### Table C12: Displacements under shear load<sup>1)</sup> (Internal threaded anchor rod)

| Anchor size Inte                                                                                                   | chor rod                                                                     | IG-M6            | IG-M8      | IG-M10 | IG-M12 | IG-M16 | IG-M20 |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|------------|--------|--------|--------|--------|------|--|--|--|--|
| Non-cracked and                                                                                                    | Non-cracked and cracked concrete C20/25 under static and quasi-static action |                  |            |        |        |        |        |      |  |  |  |  |
| All temperature                                                                                                    | $\delta_{V0}$ -factor                                                        | [mm/kN]          | 0,07       | 0,06   | 0,06   | 0,05   | 0,04   | 0,04 |  |  |  |  |
| ranges                                                                                                             | $\delta_{V\infty}$ -factor                                                   | [mm/kN]          | 0,10       | 0,09   | 0,08   | 0,08   | 0,06   | 0,06 |  |  |  |  |
| <sup>1)</sup> Calculation of<br>$\delta_{V0} = \delta_{V0}$ -facto<br>$\delta_{V\infty} = \delta_{V\infty}$ -facto | the displacement<br>or · V; V:<br>or · V;                                    | action shear loa | ad         |        |        |        |        |      |  |  |  |  |
| Injection System                                                                                                   | ESSVE ONE, ESS                                                               | VE ONE-ICE fo    | r concrete |        |        |        |        |      |  |  |  |  |
| Performances                                                                                                       |                                                                              |                  |            |        |        |        | Annex  | C 10 |  |  |  |  |

Displacements (Internal threaded anchor rod)



| Table C13: Di                                                                                                                                                                      | isplaceme                        | nts under tensi           | ion load                     | <sup>1)</sup> (rebar | ·)    |       |       |       |       |          |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|------------------------------|----------------------|-------|-------|-------|-------|-------|----------|-------|
| Anchor size reinfo                                                                                                                                                                 | orcing bar                       |                           | Ø 8                          | Ø 10                 | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 25  | Ø 28     | Ø 32  |
| Non-cracked conc                                                                                                                                                                   | rete C20/25                      | 5 under static ar         | nd quasi                     | -static a            | ction |       |       |       |       |          |       |
| Temperature                                                                                                                                                                        | $\delta_{N0}$ -factor            | [mm/(N/mm <sup>2</sup> )] | 0,021                        | 0,023                | 0,026 | 0,028 | 0,031 | 0,036 | 0,043 | 0,047    | 0,052 |
| range I: 40°C/24°C                                                                                                                                                                 | $\delta_{N\infty}$ -factor       | [mm/(N/mm <sup>2</sup> )] | 0,030                        | 0,033                | 0,037 | 0,041 | 0,045 | 0,052 | 0,061 | 0,071    | 0,075 |
| Temperature                                                                                                                                                                        | $\delta_{N0}$ -factor            | [mm/(N/mm <sup>2</sup> )] | 0,050                        | 0,056                | 0,063 | 0,069 | 0,075 | 0,088 | 0,104 | 0,113    | 0,126 |
| 80°C/50°C                                                                                                                                                                          | $\delta_{N\infty}$ -factor       | [mm/(N/mm²)]              | 0,072                        | 0,081                | 0,090 | 0,099 | 0,108 | 0,127 | 0,149 | 0,163    | 0,181 |
| Temperature                                                                                                                                                                        | $\delta_{N0}$ -factor            | [mm/(N/mm²)]              | 0,050                        | 0,056                | 0,063 | 0,069 | 0,075 | 0,088 | 0,104 | 0,113    | 0,126 |
| 120°C/72°C                                                                                                                                                                         | $\delta_{N\infty}\text{-factor}$ | [mm/(N/mm²)]              | 0,072                        | 0,081                | 0,090 | 0,099 | 0,108 | 0,127 | 0,149 | 0,163    | 0,181 |
| Cracked concrete                                                                                                                                                                   | C20/25 und                       | ler static and qu         | uasi-stat                    | ic actior            | ו     |       |       |       |       | -        |       |
| Temperature                                                                                                                                                                        | $\delta_{N0}$ -factor            | [mm/(N/mm <sup>2</sup> )] | 0,0                          | )90                  |       |       |       | 0,070 |       |          |       |
| range I: 40°C/24°C                                                                                                                                                                 | $\delta_{N\infty}$ -factor       | [mm/(N/mm <sup>2</sup> )] | 0,1                          | 05                   |       |       |       | 0,105 |       |          |       |
| Temperature                                                                                                                                                                        | $\delta_{N0}$ -factor            | [mm/(N/mm²)]              | 0,2                          | 219                  |       |       |       | 0,170 |       |          |       |
| 80°C/50°C                                                                                                                                                                          | $\delta_{N\infty}$ -factor       | [mm/(N/mm²)]              | 0,2                          | 255                  |       |       |       | 0,245 |       |          |       |
| Temperature                                                                                                                                                                        | $\delta_{N0}$ -factor            | [mm/(N/mm <sup>2</sup> )] | 0,2                          | <u>2</u> 19          |       |       |       | 0,170 |       |          |       |
| 120°C/72°C                                                                                                                                                                         | $\delta_{N\infty}$ -factor       | [mm/(N/mm²)]              | 0,2                          | 255                  |       |       |       | 0,245 |       |          |       |
| Table C14:DiAnchor size reinfo                                                                                                                                                     | isplaceme<br>orcing bar          | nt under shear            | load <sup>1)</sup> (I<br>Ø 8 | rebar)<br>Ø 10       | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 25  | Ø 28     | Ø 32  |
| Non-cracked conc                                                                                                                                                                   | rete C20/25                      | 5 under static ar         | nd quasi                     | -static a            | ction |       |       |       |       |          |       |
| All temperature                                                                                                                                                                    | $\delta_{V0}$ -factor            | [mm/kN]                   | 0,06                         | 0,05                 | 0,05  | 0,04  | 0,04  | 0,04  | 0,03  | 0,03     | 0,03  |
| ranges                                                                                                                                                                             | δ <sub>v∞</sub> -<br>factor      | [mm/kN]                   | 0,09                         | 0,08                 | 0,08  | 0,06  | 0,06  | 0,05  | 0,05  | 0,04     | 0,04  |
| Cracked concrete                                                                                                                                                                   | C20/25 und                       | ler static and qu         | uasi-stat                    | ic actior            | า     |       |       |       |       |          |       |
| All temperature                                                                                                                                                                    | $\delta_{V0}$ -factor            | [mm/kN]                   | 0,12                         | 0,12                 | 0,11  | 0,11  | 0,10  | 0,09  | 0,08  | 0,07     | 0,06  |
| ranges                                                                                                                                                                             | ∣δ <sub>v∞</sub> -<br>∫actor     | [mm/kN]                   | 0,18                         | 0,18                 | 0,17  | 0,16  | 0,15  | 0,14  | 0,12  | 0,11     | 0,10  |
| <sup>1)</sup> Calculation of the displacement<br>$\delta_{V0} = \delta_{V0}$ -factor $\cdot V$ ; V: action shear load<br>$\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$ ; |                                  |                           |                              |                      |       |       |       |       |       |          |       |
| Injection System E<br>Performances<br>Displacements (reba                                                                                                                          | SSVE ONE                         | , ESSVE ONE-ICI           | E for con                    | crete                |       |       |       |       | An    | inex C 1 | 1     |



| Ancho<br>Steel fa<br>Charac<br>Partial<br>Charac<br>Charac<br>eaunte<br>auge<br>L | r size threaded roo<br>ailure<br>teristic tension resis<br>factor<br>ned pull-out and c<br>cteristic bond resista<br>I: 40°C/24°C<br>II: 80°C/50°C<br>III: 120°C/72°C<br>II: 80°C/24°C<br>III: 80°C/24°C<br>III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d<br>oncrete failure<br>unce in non-cracl<br>Dry, wet<br>concrete<br>flooded bore<br>hole             | N <sub>Rk,s,eq</sub><br>γ <sub>Ms,N</sub><br><ed and="" cracke<="" th=""><th>[kN]<br/>[-]</th><th>M8<br/>C20/25<br/>2,5<br/>1,6</th><th><b>M10</b><br/>3,1</th><th>M12</th><th><b>M16</b><br/>1,0 ∙<br/>see Ta<br/>3,7</th><th>M20<br/>N<sub>Rk,s</sub><br/>ble C1<br/>3,7</th><th>M24</th><th>M27</th><th>M30</th></ed> | [kN]<br>[-]          | M8<br>C20/25<br>2,5<br>1,6 | <b>M10</b><br>3,1 | M12 | <b>M16</b><br>1,0 ∙<br>see Ta<br>3,7 | M20<br>N <sub>Rk,s</sub><br>ble C1<br>3,7 | M24     | M27        | M30      |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|-------------------|-----|--------------------------------------|-------------------------------------------|---------|------------|----------|
| Charac<br>Partial<br>Charac<br>Charac<br>Charac                                   | teristic tension resis<br>factor<br>ned pull-out and c<br>teristic bond resista<br>I: 40°C/24°C<br>II: 80°C/50°C<br>III: 120°C/72°C<br>II: 80°C/24°C<br>II: 80°C/24°C<br>III: 80°C/24°C<br>III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oncrete failure<br>oncrete failure<br>nce in non-crac<br>Dry, wet<br>concrete<br>flooded bore<br>hole | N <sub>Rk,s,eq</sub><br>γ <sub>Ms,N</sub><br><del>ved and cracke</del><br>τ <sub>Rk,eq</sub>                                                                                                                                                                                                                             | [KN]<br>[-]          | C20/25<br>2,5<br>1,6       | 3,1               | 3,7 | 1,0 •<br>see Ta<br>3,7               | N <sub>Rk,s</sub><br>ble C1               | 3,8     | 4.5        |          |
| Partial<br>Charac<br>Charac<br>Lemberatrice                                       | factor<br><b>ned pull-out and c</b><br>eteristic bond resista<br>I: 40°C/24°C<br>II: 80°C/50°C<br>III: 120°C/72°C<br>I: 40°C/24°C<br>II: 80°C/50°C<br>III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oncrete failure<br>ance in non-crac<br>Dry, wet<br>concrete<br>flooded bore<br>hole                   | γ <sub>Ms,N</sub><br>ked and cracke                                                                                                                                                                                                                                                                                      | d concrete (         | C20/25<br>2,5<br>1,6       | 3,1               | 3,7 | see Ta<br>3,7                        | ible C1                                   | 3,8     | 15         |          |
| Cemberature range                                                                 | Image         Participation         Participation <td>oncrete failure<br/>ince in non-cracl<br/>Dry, wet<br/>concrete<br/>flooded bore<br/>hole</td> <td>ed and cracke<br/>تRk,eq</td> <td>d concrete (</td> <td>C20/25<br/>2,5<br/>1,6</td> <td>3,1</td> <td>3,7</td> <td>3,7</td> <td>3,7</td> <td>3,8</td> <td>15</td> <td></td> | oncrete failure<br>ince in non-cracl<br>Dry, wet<br>concrete<br>flooded bore<br>hole                  | ed and cracke<br>تRk,eq                                                                                                                                                                                                                                                                                                  | d concrete (         | C20/25<br>2,5<br>1,6       | 3,1               | 3,7 | 3,7                                  | 3,7                                       | 3,8     | 15         |          |
| Charac<br>Temperature range                                                       | cteristic bond resistation         I:       40°C/24°C         II:       80°C/50°C         III:       120°C/72°C         I:       40°C/24°C         II:       80°C/50°C         III:       80°C/72°C         II:       80°C/72°C         II:       80°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ince in non-cracl<br>Dry, wet<br>concrete<br>flooded bore<br>hole                                     | <ed and="" cracke<="" td=""><td>d concrete (</td><td>C20/25<br/>2,5<br/>1,6</td><td>3,1</td><td>3,7</td><td>3,7</td><td>3,7</td><td>3,8</td><td>15</td><td></td></ed>                                                                                                                                                    | d concrete (         | C20/25<br>2,5<br>1,6       | 3,1               | 3,7 | 3,7                                  | 3,7                                       | 3,8     | 15         |          |
| Temperature range                                                                 | I:       40°C/24°C         II:       80°C/50°C         III:       120°C/72°C         I:       40°C/24°C         II:       80°C/50°C         III:       120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry, wet<br>concrete<br>flooded bore<br>hole                                                          | <sup>-τ</sup> Rk,eq                                                                                                                                                                                                                                                                                                      |                      | 2,5<br>1,6                 | 3,1               | 3,7 | 3,7                                  | 3,7                                       | 3,8     | 15         |          |
| Temperature rang                                                                  | II:       80°C/50°C         III:       120°C/72°C         I:       40°C/24°C         II:       80°C/50°C         III:       120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | flooded bore<br>hole                                                                                  | <sup>− τ</sup> Rk,eq                                                                                                                                                                                                                                                                                                     |                      | 1,6                        |                   |     |                                      |                                           |         | 4,5        | 4,5      |
| Temperature                                                                       | III:       120°C/72°C         I:       40°C/24°C         II:       80°C/50°C         III:       120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | flooded bore<br>hole                                                                                  | <sup>-τ</sup> Rk,eq                                                                                                                                                                                                                                                                                                      |                      |                            | 2,2               | 2,7 | 2,7                                  | 2,7                                       | 2,8     | 3,1        | 3,1      |
| Temper                                                                            | I:       40°C/24°C         II:       80°C/50°C         III:       120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flooded bore<br>hole                                                                                  |                                                                                                                                                                                                                                                                                                                          | [N/mm <sup>2</sup> ] | 1,3                        | 1,6               | 2,0 | 2,0                                  | 2,0                                       | 2,1     | 2,4        | 2,4      |
| Ter                                                                               | II:         80°C/50°C           III:         120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hole                                                                                                  |                                                                                                                                                                                                                                                                                                                          |                      | 2,5                        | 2,5               | 3,7 | 3,7                                  | N                                         | o Perfe | ormano     | <u>م</u> |
|                                                                                   | III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                      | 1,6 1,9 2,7 2,7            |                   |     |                                      |                                           | ssesse  | ed (NPA    | 4)       |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C/72°C 1,3 1,6 2,0 2,0                                                                                |                                                                                                                                                                                                                                                                                                                          |                      |                            |                   |     |                                      |                                           |         |            |          |
| Redukt                                                                            | tion factor $\psi^0_{sus}$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cracked and nor                                                                                       | n-cracked conc                                                                                                                                                                                                                                                                                                           | rete C20/25          |                            |                   |     |                                      |                                           |         |            |          |
| ature<br>e                                                                        | l: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry, wet                                                                                              |                                                                                                                                                                                                                                                                                                                          |                      |                            |                   |     | 0,                                   | 73                                        |         |            |          |
| npera                                                                             | II: 80°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | flooded bore                                                                                          | $\Psi^0$ sus                                                                                                                                                                                                                                                                                                             | [-]                  |                            |                   |     | 0,                                   | 65                                        |         |            |          |
| Ter                                                                               | III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hole                                                                                                  |                                                                                                                                                                                                                                                                                                                          |                      |                            |                   |     | 0,                                   | 57                                        |         |            |          |
| Increas                                                                           | sing factors for conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rete $\psi_{C}$                                                                                       | C25/30 to C5                                                                                                                                                                                                                                                                                                             | 50/60                |                            |                   |     | 1                                    | ,0                                        |         |            |          |
| Concre                                                                            | ete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                      |                            |                   |     | To                                   |                                           |         |            |          |
| Splittir                                                                          | ni parameter<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                      |                            |                   |     | see ra                               |                                           |         |            |          |
| Releva                                                                            | nt parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                      |                            |                   |     | see Ta                               | ble C2                                    |         |            |          |
| Installa                                                                          | ation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                          | 1                    |                            |                   |     |                                      |                                           |         |            |          |
| for dry                                                                           | and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       | γ <sub>inst</sub>                                                                                                                                                                                                                                                                                                        | [-]                  | 1,0                        | 1                 | 4   |                                      | 1,2                                       | NI      | <b>Σ</b> Δ |          |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                      |                            |                   |     |                                      |                                           |         |            |          |
| Injecti<br>Perfor<br>Chara                                                        | on System ESSVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ONE, ESSVE ON                                                                                         | IE-ICE for cond                                                                                                                                                                                                                                                                                                          | performance          | e catego                   | ory C1)           |     |                                      |                                           | Anne    | x C 12     |          |



| Table C16:         Characteristic valu           (performance cate) | es of shear<br>gory C1)           | loads u   | Inder s | seismic  | action                 | l                    |                       |         |                       |        |  |
|---------------------------------------------------------------------|-----------------------------------|-----------|---------|----------|------------------------|----------------------|-----------------------|---------|-----------------------|--------|--|
| Anchor size threaded rod                                            |                                   |           | M8      | M10      | M12                    | M16                  | M20                   | M24     | M27                   | M30    |  |
| Steel failure without lever arm                                     |                                   |           |         |          |                        |                      |                       |         |                       |        |  |
| Characteristic shear resistance<br>(Seismic C1)                     | V <sub>Rk,s,eq</sub>              | [kN]      |         |          |                        | 0,70                 | )∙V <sup>0</sup> Rk   | ,S      |                       |        |  |
| Partial factor                                                      | γ <sub>Ms,V</sub>                 | [-]       |         |          |                        | see                  | Table C               | ;1      |                       |        |  |
| Ductility factor                                                    | k <sub>7</sub>                    | [-]       | [-] 1,0 |          |                        |                      |                       |         |                       |        |  |
| Steel failure with lever arm                                        |                                   |           |         |          |                        |                      |                       |         |                       |        |  |
| Characteristic bending moment                                       | M <sup>0</sup> <sub>Rk,s,eq</sub> | [Nm<br>]  |         |          | No Pe                  | forman               | ce Asse               | ssed (N | PA)                   |        |  |
| Concrete pry-out failure                                            |                                   |           |         |          |                        |                      |                       |         |                       |        |  |
| Factor                                                              | k <sub>8</sub>                    | [-]       |         |          |                        |                      | 2,0                   |         |                       |        |  |
| Installation factor                                                 | γ <sub>inst</sub>                 | [-]       |         |          |                        |                      | 1,0                   |         |                       |        |  |
| Concrete edge failure                                               |                                   |           |         |          |                        |                      |                       |         |                       |        |  |
| Effective length of fastener                                        | ۱ <sub>f</sub>                    | [mm<br>]  |         | m        | in(h <sub>ef</sub> ; 1 | 2 • d <sub>nor</sub> | m)                    |         | min(h <sub>ef</sub> ; | 300mm) |  |
| Outside diameter of fastener                                        | d <sub>nom</sub>                  | [mm<br>]  | 8       | 10       | 12                     | 16                   | 20                    | 24      | 27                    | 30     |  |
| Installation factor                                                 | γ <sub>inst</sub>                 | [-]       |         |          |                        |                      | 1,0                   |         |                       |        |  |
| Factor for annular gap                                              | $\alpha_{gap}$                    | [-]       |         |          |                        | 0,5                  | 5 (1,0) <sup>1)</sup> |         |                       |        |  |
| Annex A 3 is required                                               |                                   |           |         |          |                        |                      |                       |         |                       |        |  |
| Injection System ESSVE ONE, ESSVE ONE-ICE for concrete              |                                   |           |         |          |                        | Annox C 12           |                       |         |                       |        |  |
| Performances<br>Characteristic values of shear loads ur             | nder seismic a                    | ction (pe | erforma | nce cate | gory C1)               | )                    |                       |         |                       |        |  |



| Table C17:         Characteristic values<br>(performance categor)                                                        | s of tension<br>ory C1) | n loads ui           | nder s | eismic  | actio   | n    |                   |            |         |         |      |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|--------|---------|---------|------|-------------------|------------|---------|---------|------|
| Anchor size reinforcing bar                                                                                              |                         |                      | Ø 8    | Ø 10    | Ø 12    | Ø 14 | Ø 16              | Ø 20       | Ø 25    | Ø 28    | Ø 32 |
| Steel failure                                                                                                            | Ne                      |                      |        |         |         | 1.0  | • 4 • 1           | : 1)       |         |         |      |
| Cross section area                                                                                                       | A                       |                      | 50     | 70      | 113     | 154  | 201               | UK<br>314  | 101     | 616     | 804  |
| Portial factor                                                                                                           | /`s                     |                      | 50     | 79      | 113     | 154  | 1 4 <sup>2)</sup> | 514        | 491     | 010     | 004  |
| Combined null-out and concrete fail                                                                                      |                         | [⁻]                  |        |         |         |      | 1,4               |            |         |         |      |
| Characteristic bond resistance in non-c                                                                                  | racked and              | cracked co           | ncrete | C20/25  | 5       |      |                   |            |         |         |      |
| □ l: 40°C/24°C Dr/ wat                                                                                                   |                         |                      | 2,5    | 3,1     | 3,7     | 3,7  | 3,7               | 3,7        | 3,8     | 4,5     | 4,5  |
| II: 80°C/50°C Dry, wet                                                                                                   |                         |                      | 1,6    | 2,2     | 2,7     | 2,7  | 2,7               | 2,7        | 2,8     | 3,1     | 3,1  |
|                                                                                                                          | TRK PO                  | [N/mm <sup>2</sup> ] | 1,3    | 1,6     | 2,0     | 2,0  | 2,0               | 2,0        | 2,1     | 2,4     | 2,4  |
| E E I: 40°C/24°C flooded                                                                                                 |                         | []                   | 2,5    | 2,5     | 3,7     | 3,7  | 3,7               | 1          | No Perf | ormanc  | e    |
| $\stackrel{\bullet}{\vdash}$ $\stackrel{\Pi:}{\amalg}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ bore hole   |                         |                      | 1,8    | 1,9     | 2,7     | 2,7  | 2,7               | <i>   </i> | Assesse | ed (NPA | 4)   |
| Reduktion factor $\psi^0_{SUS}$ in cracked and                                                                           | non-cracked             | d concrete           | C20/2  | 5       | 2,0     | ,0   |                   |            |         |         |      |
| ≝ I: 40°C/24°C Dry, wet                                                                                                  |                         |                      |        |         |         |      | 0,73              |            |         |         |      |
| concrete and II: 80°C/50°C and                                                                                           | $\Psi^0$ sus            | [-]                  |        |         |         |      | 0,65              |            |         |         |      |
| E → III: 120°C/72°C bore hole                                                                                            |                         |                      |        |         |         |      | 0,57              |            |         |         |      |
| Increasing factors for concrete $\psi_{\textbf{C}}$                                                                      | C25/30 to               | C50/60               |        |         |         |      | 1,0               |            |         |         |      |
| Concrete cone failure                                                                                                    |                         |                      |        |         |         |      |                   |            |         |         |      |
| Relevant parameter                                                                                                       |                         |                      |        |         |         | see  | e l able          | C2         |         |         |      |
|                                                                                                                          |                         |                      |        |         |         |      | Tabla             | <u></u>    |         |         |      |
|                                                                                                                          |                         |                      |        |         |         | see  | e rabie           | 62         |         |         |      |
| for dry and wet concrete                                                                                                 |                         |                      | 12     |         |         |      | 1                 | 2          |         |         |      |
| for flooded bore hole                                                                                                    | γinst                   | [-]                  | 1,4    |         | 1.4     |      |                   | , <u> </u> | N       | PA      |      |
| <sup>(1)</sup> f <sub>uk</sub> shall be taken from the specification<br><sup>(2)</sup> in absence of national regulation | is of reinforci         | ng bars              |        |         |         |      |                   |            |         |         |      |
| Injection System ESSVE ONE, ESSVE                                                                                        | ONE-ICE fo              | or concrete          | )      |         |         |      |                   |            | _       |         |      |
| Performances<br>Characteristic values of tension loads un                                                                | der seismic a           | action (perf         | ormand | e cateç | jory C1 | )    |                   |            | Anne    | x C 14  |      |



| Table C18:         Characteristic val           (performance cat                                            | lues of shear<br>egory C1) | loads u            | nder s                                 | eismic | actio                 | n                 |                   |      |      |                       |      |
|-------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|----------------------------------------|--------|-----------------------|-------------------|-------------------|------|------|-----------------------|------|
| Anchor size reinforcing bar                                                                                 |                            |                    | Ø 8                                    | Ø 10   | Ø 12                  | Ø 14              | Ø 16              | Ø 20 | Ø 25 | Ø 28                  | Ø 32 |
| Steel failure without lever arm                                                                             |                            |                    | •                                      |        |                       | •                 | •                 |      |      |                       | •    |
| Characteristic shear resistance                                                                             | V <sub>Rk,s,eq</sub>       | [kN]               | [kN] $0,35 \cdot A_s \cdot f_{uk}^{2}$ |        |                       |                   |                   |      |      |                       |      |
| Cross section area                                                                                          | A <sub>s</sub>             | [mm <sup>2</sup> ] | 50                                     | 79     | 113                   | 154               | 201               | 314  | 491  | 616                   | 804  |
| Partial factor                                                                                              | γ <sub>Ms</sub> ,v         | [-]                |                                        |        |                       | •                 | 1,5 <sup>2)</sup> | •    |      |                       |      |
| Ductility factor                                                                                            | k <sub>7</sub>             | [-]                |                                        |        |                       |                   | 1,0               |      |      |                       |      |
| Steel failure with lever arm                                                                                |                            |                    | •                                      |        |                       |                   |                   |      |      |                       |      |
| Characteristic bending moment $M^0_{Rk,s,eq}$ [Nm] No Performance Assessed (NPA)                            |                            |                    |                                        |        |                       |                   |                   |      |      |                       |      |
| Concrete pry-out failure                                                                                    |                            |                    | •                                      |        |                       |                   |                   |      |      |                       |      |
| Factor                                                                                                      | k <sub>8</sub>             | [-]                |                                        |        |                       |                   | 2,0               |      |      |                       |      |
| Installation factor                                                                                         | γinst                      | [-]                |                                        |        |                       |                   | 1,0               |      |      |                       |      |
| Concrete edge failure                                                                                       |                            |                    | •                                      |        |                       |                   |                   |      |      |                       |      |
| Effective length of fastener                                                                                | ۱ <sub>f</sub>             | [mm]               |                                        | mi     | n(h <sub>ef</sub> ; 1 | 2•d <sub>no</sub> | m)                |      | min( | h <sub>ef</sub> ; 300 | (mm) |
| Outside diameter of fastener                                                                                | d <sub>nom</sub>           | [mm]               | 8                                      | 10     | 12                    | 14                | 16                | 20   | 25   | 28                    | 32   |
| Installation factor                                                                                         | γinst                      | [-]                |                                        |        |                       |                   | 1,0               | ·    |      |                       |      |
| Factor for annular gap                                                                                      | α <sub>gap</sub>           | [-]                | 0,5 (1,0) <sup>3)</sup>                |        |                       |                   |                   |      |      |                       |      |
| <sup>1)</sup> $f_{uk}$ shall be taken from the specifica<br><sup>2)</sup> in absence of national regulation | ations of reinford         | ing bars           | w and a                                |        |                       | - +h - fi         | turo Li           |      |      |                       | 20 4 |

<sup>3)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

#### Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

Performances

Characteristic values of shear loads under seismic action (performance category C1)

Annex C 15



| Table C19: Dis                                                                                                           | splacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s under tensi             | on load <sup>1</sup>   | <sup>)</sup> (threa | ded rod | )    |      |       |            |      |      |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------|---------|------|------|-------|------------|------|------|--|
| Anchor size thread                                                                                                       | led rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                        | M8                  | M10     | M12  | M16  | M20   | M24        | M27  | M30  |  |
| Cracked and non-c                                                                                                        | racked cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rete C20/25 ur            | nder seis              | mic C1              | action  |      |      | •     |            |      |      |  |
| Temperature range                                                                                                        | $\delta_{N0}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mm/(N/mm <sup>2</sup> ]  | )]                     | 0,090               |         |      |      |       | )70        |      |      |  |
| I: 40°C/24°C                                                                                                             | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [mm/(N/mm <sup>2</sup> )  | )]                     | 0,105 (             |         |      |      |       | 0,105      |      |      |  |
| Temperature range                                                                                                        | $\delta_{N0}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mm/(N/mm <sup>2</sup> ]  | )]                     | 0,                  | 219     |      |      | 0,    | 0,170      |      |      |  |
| II: 80°C/50°C                                                                                                            | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [mm/(N/mm <sup>2</sup> )  | )]                     | 0,                  | 255     |      |      | 0,2   | 0,245      |      |      |  |
| Temperature range                                                                                                        | $\delta_{N0}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mm/(N/mm <sup>2</sup> ]  | ]                      | 0,                  | 219     |      |      | 0,    | 170        |      |      |  |
| III: 120°C/72°C                                                                                                          | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [mm/(N/mm <sup>2</sup> )  | )]                     | 0,                  | 255     |      |      | 0,2   | 245        |      |      |  |
| Table C20: Dis                                                                                                           | splacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s under tensi             | on load <sup>1</sup>   | <sup>)</sup> (rebar | )       |      |      |       |            |      |      |  |
| Anchor size reinfo                                                                                                       | rcing bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | Ø 8                    | Ø 10                | Ø 12    | Ø 14 | Ø 16 | Ø 20  | Ø 25       | Ø 28 | Ø 32 |  |
| Cracked and non-c                                                                                                        | racked conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rete C20/25 ur            | nder seis              | mic C1              | action  |      | •    |       |            |      |      |  |
| Temperature range                                                                                                        | $\delta_{\text{N0}}\text{-}\text{factor}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [mm/(N/mm <sup>2</sup> )] | 0,0                    | 090                 |         |      |      | 0,070 |            |      |      |  |
| I: 40°C/24°C                                                                                                             | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [mm/(N/mm <sup>2</sup> )] | 0,1                    | 05                  |         |      |      | 0,105 |            |      |      |  |
| Temperature range                                                                                                        | $\delta_{\text{N0}}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [mm/(N/mm <sup>2</sup> )] | 0,2                    | 219                 |         |      |      | 0,170 |            |      |      |  |
| II: 80°C/50°C                                                                                                            | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [mm/(N/mm <sup>2</sup> )] | 0,2                    | 255                 |         |      |      | 0,245 |            |      |      |  |
| Temperature range                                                                                                        | $\delta_{N0}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mm/(N/mm <sup>2</sup> )] | 0,2                    | 219                 |         |      |      | 0,170 |            |      |      |  |
| III: 120°C/72°C                                                                                                          | $\frac{1}{2} \frac{1}{2} \frac{1}$ |                           |                        |                     |         |      |      |       |            |      |      |  |
| $\delta_{N_{\infty}} = \delta_{N_{\infty}} - factor$ Table C21: Dis                                                      | $\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor} \cdot \tau; & \tau: \text{ action bond stress for tension} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau; & \end{array}$ Table C21: Displacements under shear load <sup>2</sup> (threaded rod)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                        |                     |         |      |      |       |            |      |      |  |
| Anchor size thread                                                                                                       | led rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                        | M8                  | M10     | M12  | M16  | M20   | M24        | M27  | M30  |  |
| Cracked and non-c                                                                                                        | racked conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rete C20/25 ur            | nder seis              | mic C1              | action  |      |      |       |            |      |      |  |
| All temperature                                                                                                          | $\delta_{V0}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mm/kN]                   |                        | 0,12                | 0,12    | 0,11 | 0,10 | 0,09  | 0,08       | 0,08 | 0,07 |  |
| ranges                                                                                                                   | $\delta_{V\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [mm/kN]                   |                        | 0,18                | 0,18    | 0,17 | 0,15 | 0,14  | 0,13       | 0,12 | 0,10 |  |
| Table C22: Dis                                                                                                           | splacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | under shear               | load <sup>1)</sup> (re | ebar)               |         |      |      |       |            |      |      |  |
| Anchor size reinfo                                                                                                       | rcing bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | Ø 8                    | Ø 10                | Ø 12    | Ø 14 | Ø 16 | Ø 20  | Ø 25       | Ø 28 | Ø 32 |  |
| Cracked and non-ci                                                                                                       | racked conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rete C20/25 ur            | nder seis              | mic C1              | action  |      |      |       |            |      |      |  |
| All temperature                                                                                                          | $\delta_{V0}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [mm/kN]                   | 0,12                   | 0,12                | 0,11    | 0,11 | 0,10 | 0,09  | 0,08       | 0,07 | 0,06 |  |
| ranges                                                                                                                   | $\delta_{V\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [mm/kN]                   | 0,18                   | 0,18                | 0,17    | 0,16 | 0,15 | 0,14  | 0,12       | 0,11 | 0,10 |  |
| <sup>1)</sup> Calculation of the<br>$\delta_{V0} = \delta_{V0}$ -factor<br>$\delta_{V\infty} = \delta_{V\infty}$ -factor | e displacemei<br>V;<br>· V;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt<br>V: action shea      | r load                 |                     |         |      |      |       |            |      |      |  |
| Injection System ES                                                                                                      | SSVE ONE, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SSVE ONE-ICE              | for cond               | crete               |         |      |      |       |            |      |      |  |
| Performances<br>Displacements under seismic C1 action (threaded rods and rebar)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                     |         |      |      |       | Annex C 16 |      |      |  |





Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



### European Technical Assessment

### ETA-18/0642 of 8 October 2018

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product ESSVE Injection system ONE or ONE ICE for Masonry Product family Metal Injection anchors for use in masonry to which the construction product belongs **ESSVE** Produkter AB Manufacturer Esbogatan 14 164 74 KISTA SCHWEDEN ESSVE Plant No. 671 Manufacturing plant This European Technical Assessment 61 pages including 3 annexes which form an integral part contains of this assessment EAD 330076-00-0604 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of



### **European Technical Assessment** ETA-18/0642

Page 2 of 61 | 8 October 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 61 | 8 October 2018

#### Specific Part

#### 1 Technical description of the product

The ESSVE Injection System ONE or ONE ICE for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar ESSVE ONE or ESSVE ONE ICE, a perforated sleeve and an anchor rod with hexagon nut and washer. The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic             | Performance             |
|--------------------------------------|-------------------------|
| Characteristic values for resistance | See Annexes C 1 to C 45 |
| Displacements                        | See Annex C 5 to C 45   |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance |
|--------------------------|-------------|
| Reaction to fire         | Class A1    |

#### 3.3 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-00-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1


#### European Technical Assessment ETA-18/0642 English translation prepared by DIBt

Page 4 of 61 | 8 October 2018

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 October 2018 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department *beglaubigt:* Baderschneider









# Page 7 of European Technical Assessment ETA-18/0642 of 8 October 2018







| Table A1: Materials                                                                             |                                                                                                                                      |                                                                                                             |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Designation                                                                                     | Material                                                                                                                             |                                                                                                             |
| Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042:<br>hot-dip galvanised ≥ 40 μm acc. to EN ISO 146 | 1999 or Steel,<br>51:2009 and EN ISO 10684:200                                                                                       | 4+AC:2009                                                                                                   |
| Anchor rod                                                                                      | Steel, EN 10087:1998 or EN<br>Property class 4.6, 4.8, 5.6, 5<br>EN 1993-1-8:2005+AC:2009<br>A <sub>s</sub> > 8% fracture elongation | 10263:2001<br>5.8, 8.8 acc.                                                                                 |
| Hexagon nut, EN ISO 4032:2012                                                                   | Steel acc. EN 10087:1998 or<br>Property class 4 (for class 4.6<br>Property class 5 (for class 5.6<br>Property class 8 (for class 8.8 | EN 10263:2001<br>6, 4.8 rod) EN ISO 898-2:2012<br>6, 5.8 rod) EN ISO 898-2:2012<br>3 rod) EN ISO 898-2:2012 |
| Washer, EN ISO 887:2006, EN ISO 7089:2000,<br>EN ISO 7093:2000, or EN ISO 7094:2000             | Steel, zinc plated or hot-dip g                                                                                                      | alvanised                                                                                                   |
| Internal threaded rod                                                                           | Steel, zinc plated<br>Property class 5.6, 5.8 and 8                                                                                  | .8 EN ISO 898-1:2013                                                                                        |
| Stainless steel                                                                                 |                                                                                                                                      |                                                                                                             |
| Anchor rod                                                                                      | Material 1.4401 / 1.4404 / 1.4<br>Property class 70 EN ISO 35<br>Property class 80 EN ISO 35                                         | 571, EN 10088-1:2014,<br>06-1:2009<br>06-1:2009                                                             |
| Hexagon nut, EN ISO 4032:2012                                                                   | Material 1.4401 / 1.4404 / 1.4<br>Property class 70 (for class 7<br>Property class 80 (for class 8                                   | IS71 EN 10088-1:2014,<br>10 rod) EN ISO 3506-2:2009<br>10 rod) EN ISO 3506-2:2009                           |
| Washer, EN ISO 887:2006, EN ISO 7089:2000,<br>EN ISO 7093:2000, or EN ISO 7094:2000             | Material 1.4401, 1.4404 or 1                                                                                                         | .4571, EN 10088-1:2014                                                                                      |
| Internal threaded rod                                                                           | Stainless steel: 1.4401 / 1.44<br>Property class 70 (for class 7                                                                     | 04 / 1.4571, EN 10088-1:2014<br>0 rod) EN ISO 3506-1:2009                                                   |
| High corrosion resistant steel (HCR)                                                            |                                                                                                                                      |                                                                                                             |
| Anchor rod                                                                                      | Material 1.4529 / 1.4565, EN<br>Property class 70 EN ISO 35<br>Property class 80 EN ISO 35                                           | 10088-1:2014,<br>06-1:2009<br>06-1:2009                                                                     |
| Hexagon nut, EN ISO 4032:2012                                                                   | Material 1.4529 / 1.4565, EN<br>Property class 70 (for class 7<br>Property class 80 (for class 8                                     | 10088-1:2014,<br>0 rod) EN ISO 3506-2:2009<br>0 rod) EN ISO 3506-2:2009                                     |
| Washer, EN ISO 887:2006, EN ISO 7089:2000,<br>EN ISO 7093:2000, or EN ISO 7094:2000             | Material 1.4529 / 1.4565, EN                                                                                                         | 10088-1:2014                                                                                                |
| Internal threaded rod                                                                           | Stainless steel: 1.4529 / 1.45<br>Property class 70 (for class 7                                                                     | 65, EN 10088-1:2014<br>'0 rod) EN ISO 3506-1:2009                                                           |
| Plastic sleeve                                                                                  |                                                                                                                                      |                                                                                                             |
| Perforated sleeve                                                                               | Material: Polypropylene                                                                                                              |                                                                                                             |
|                                                                                                 |                                                                                                                                      |                                                                                                             |
| ESSVE Injection system ONE, ONE ICE for m                                                       | asonry                                                                                                                               |                                                                                                             |
| Product description<br>Materials                                                                |                                                                                                                                      | Annex A 4                                                                                                   |

#### Page 9 of European Technical Assessment ETA-18/0642 of 8 October 2018



| Table A2:         Sleeve (Plastic)                                                                        |                                      |           |                  |                                      |                     |                                 |                                  |                                  |                                  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|------------------|--------------------------------------|---------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SH 12x80<br>SH 16x85<br>SH 20x85<br>d <sub>s</sub>                                                        |                                      |           | L <sub>s</sub> = | = h <sub>ef</sub> = h <sub>nor</sub> | n<br>T              |                                 |                                  |                                  |                                  |
| SH 16x130<br>SH 20x130<br>SH 20x200<br>$d_s$                                                              |                                      |           |                  |                                      |                     |                                 |                                  |                                  |                                  |
| Table A3: Sizes sleeve                                                                                    |                                      |           |                  |                                      |                     |                                 |                                  |                                  |                                  |
|                                                                                                           |                                      | S         | eeve             | 12x80                                | 16x85               | 16x130                          | 20x85                            | 20x130                           | 20x200                           |
| Diameter of sleeve                                                                                        | d <sub>s</sub> =                     | (         | [mm]             | 12                                   | 16                  | 16                              | 20                               | 20                               | 20                               |
| Length of sleeve                                                                                          | Ls                                   |           | [mm]             | 80                                   | 85                  | 130                             | 85                               | 130                              | 200                              |
| Effective anchorage depth                                                                                 | h <sub>ef</sub>                      | [         | [mm]             | 80                                   | 85                  | 130                             | 85                               | 130                              | 200                              |
| Overall anchor embedment                                                                                  | h <sub>nor</sub>                     | n l       | [mm]             | 80                                   | 85                  | 130                             | 85                               | 130                              | 200                              |
| Table A4: Steel                                                                                           |                                      |           |                  |                                      |                     |                                 | 1                                |                                  |                                  |
| Α                                                                                                         | nchor                                | rod       | IG-M6            | IG-M8                                | IG-M10              | M8                              | M10                              | M12                              | M16                              |
| Outside diameter of anchor                                                                                | d <sub>1</sub> =<br>d <sub>nom</sub> | [mm]      | 10 <sup>1)</sup> | 12 <sup>1)</sup>                     | 16 <sup>1)</sup>    | 8                               | 10                               | 12                               | 16                               |
| Diameter of internal thread                                                                               | d <sub>2</sub>                       | [mm]      | 6                | 8                                    | 10                  | -                               | -                                | -                                | -                                |
| Thread engagement length<br>Min/max                                                                       | I <sub>IG</sub>                      | [mm]      | 8/20             | 8/20                                 | 10/25               | -                               | -                                | -                                | -                                |
| Total length of steel element                                                                             | l <sub>ges</sub>                     | [mm]      | Wit<br>V         | h sleeve: he<br>Vithout sleev        | ef - 5mm<br>/e: hef | hef + t <sub>fix</sub> +<br>9,5 | hef + t <sub>fix</sub> +<br>11,5 | hef + t <sub>fix</sub><br>+ 17,5 | hef + t <sub>fix</sub><br>+ 20,0 |
| Internal threaded rod with me                                                                             | ric exte                             | ernal thr | ead              |                                      |                     |                                 |                                  |                                  |                                  |
| ESSVE Injection system ONE, ONE ICE for masonry       Annex A 5         Product description       Sleeves |                                      |           |                  |                                      |                     |                                 |                                  |                                  |                                  |



# Specifications of intended use

#### Anchorages subject to:

Static and quasi-static loads

#### **Base materials:**

- Autoclaved Aerated Concrete (Use category d) according to Annex B2
- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (use category c), according to Annex B2 and B3
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to Technical Report TR 053 under consideration of the β-factor according to Annex C1, Table C1.

Note: The characteristic resistance for solid bricks and autoclaved aerated concrete are also valid for larger brick sizes and larger compressive strength of the masonry unit.

#### **Temperature Range:**

- T<sub>a</sub>: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- $T_{b}$ : 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- T<sub>c</sub>: 40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

#### Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
  permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high
  corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Use categories in respect of installation and use:

- Category d/d: Installation and use in dry masonry
- Category w/w: Installation and use in dry or wet masonry (incl. w/d installation in wet masonry and use in dry masonry)

#### Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorages are designed in accordance with the Technical Report TR 054, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.
- $N_{Bk,p} = N_{Bk,b}$  see Annex C4 to C45;  $N_{Bk,s}$  see Annex C2;  $N_{Bk,pb}$  see Technical Report TR 054
- $V_{Rk,b}$  and  $V_{Rk,c}$  see Annex C4 to C45;  $V_{Rk,s}$  see Annex C2;  $V_{Rk,pb}$  see Technical Report TR 054
- For application with sleeve with drill bit size  $\leq 15$  mm installed in joints not filled with mortar:

$$\circ$$
 N<sub>Bk p</sub> = 0.18 \* N<sub>Bk p</sub> and N<sub>Bk b</sub> = 0.18 \* N<sub>Bk b</sub> (N<sub>Bk p</sub> = N<sub>Bk b</sub> see Annex C4

$$V_{\text{Rk,p,j}} = 0,15 * V_{\text{Rk,p}} \text{ and } V_{\text{Rk,b,j}} = 0,15 * V_{\text{Rk,b}}$$
 ( $V_{\text{Rk,p}} = V_{\text{Rk,b}}$  see Annex C4 to C45)

- Application without sleeve installed in joints not filled with mortar is not allowed.

#### Installation:

- Dry or wet structures.
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod .

# ESSVE Injection system ONE, ONE ICE for masonry

# Intended Use

Specifications

to (C45)



| Tal          | Table B1: Overview brick types and properties with corresponding fastening elements (Anchor and Sleeves) |                      |                                         |                         |                       |                                                                                                         |                                                                                                                                                                       |              |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|-------------------------|-----------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| Brick-No.    | Brick type                                                                                               | Picture              | Brick size<br>length<br>width<br>height | Compressive<br>strength | Bulk<br>density       | Sle                                                                                                     | eeve - Anchor type                                                                                                                                                    | Annex        |  |  |  |
|              |                                                                                                          |                      | [mm]                                    | [N/mm <sup>2</sup> ]    | [kg/dm <sup>3</sup> ] |                                                                                                         |                                                                                                                                                                       |              |  |  |  |
| Auto         | claved aerated                                                                                           | concrete units accor | ding EN 771                             | -4                      |                       | 1                                                                                                       |                                                                                                                                                                       |              |  |  |  |
| 1            | Autoclaved<br>Aerated<br>Concrete<br>AAC6                                                                | Ī                    | 499<br>240<br>249                       | 6                       | 0,6                   | M8/M10/M12                                                                                              | /M16/IG-M6/IG-M8/IG-M10                                                                                                                                               | C4 –<br>C5   |  |  |  |
| Calc         | ium silicate mas                                                                                         | onry units according | g EN 771-2                              |                         |                       |                                                                                                         |                                                                                                                                                                       |              |  |  |  |
| 2            | Calcium silicate<br>solid brick<br>KS-NF                                                                 |                      | 240<br>115<br>71                        | 10<br>20<br>27          | 2,0                   | M8/M10/M12<br>SH 12x80 - M<br>SH 16x85 - M<br>SH 16x130 -<br>SH 20x85 - M<br>SH 20x130 -<br>SH 20x200 - | /M16/IG-M6/IG-M8/IG-M10<br>//8<br>//8/M10/IG-M6<br>//12/M16/IG-M6/IG-M10<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10                   | C6 –<br>C8   |  |  |  |
| 3            | Calcium silicate<br>hollow brick<br>KSL-3DF                                                              |                      | 240<br>175<br>113                       | 8<br>12<br>14           | 1,4                   | SH 12x80 – M<br>SH 16x85 – M<br>SH 16x130 –<br>SH 20x85 – M<br>SH 20x130 –<br>SH 20x200 –               | //8<br>//8/M10/IG-M6<br>//12/M16/IG-M6<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10                                                     | C9 -<br>C11  |  |  |  |
| 4            | Calcium silicate<br>hollow brick<br>KSL-12DF                                                             | and a series         | 498<br>175<br>238                       | 10<br>12<br>16          | 1,4                   | SH 12x80 - N<br>SH 16x85 - N<br>SH 16x130 -<br>SH 20x85 -<br>SH 20x130 -                                | //8<br>//8/M10/IG-M6<br>M8/M10/IG-M6<br>M12/M16/IG-M8/IG-M10<br>M12/M16/IG-M8/IG-M10                                                                                  | C12 -<br>C14 |  |  |  |
| Clay         | masonry units a                                                                                          | according EN 771-1   |                                         |                         |                       |                                                                                                         |                                                                                                                                                                       |              |  |  |  |
| 5            | Clay solid brick<br>Mz – DF                                                                              |                      | 240<br>115<br>55                        | 10<br>20<br>28          | 1,6                   | M8/M10/M12<br>SH 12x80 - M<br>SH 16x85 - M<br>SH 16x130 -<br>SH 20x85 - M<br>SH 20x130 -<br>SH 20x200 - | /M16/IG-M6/IG-M8/IG-M10<br>//8<br>//8/M10/IG-M6<br>//12/M16/IG-M6<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10 | C15 -<br>C17 |  |  |  |
| 6            | Clay hollow<br>brick<br>Hlz-16DF                                                                         |                      | 497<br>240<br>238                       | 6<br>8<br>12<br>14      | 0,8                   | SH 12x80 - N<br>SH 16x85 - N<br>SH 16x130 -<br>SH 20x85 - N<br>SH 20x130 -<br>SH 20x200 -               | //8<br>//8/M10/IG-M6<br>//12/M16/IG-M6<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10<br>//12/M16/IG-M8/IG-M10                                                     | C18 -<br>C20 |  |  |  |
| 7            | Clay hollow<br>brick<br>Porotherm<br>Homebric                                                            |                      | 500<br>200<br>299                       | 4<br>6<br>10            | 0,7                   | SH 12x80 - M<br>SH 16x85 - M<br>SH 16x130 -<br>SH 20x85 -<br>SH 20x130 -                                | //8<br>//8/M10/IG-M6<br>M8/M10/IG-M6<br>M12/M16/IG-M8/IG-M10<br>M12/M16/IG-M8/IG-M10                                                                                  | C21 -<br>C23 |  |  |  |
| E<br>In<br>B | SSVE Injection<br>Itended Use<br>rick types and p                                                        | n system ONE, ON     | Annex B 2                               |                         |                       |                                                                                                         |                                                                                                                                                                       |              |  |  |  |



| Tal       | Table B1: Overview brick types and properties with corresponding fastening elements (Anchor and Sleeves) (continue) |                     |                                         |                         |                       |                                                                                  |                                                                                                                                                              |              |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|-------------------------|-----------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| Brick-No. | Brick type                                                                                                          | Picture             | Brick size<br>length<br>width<br>height | Compressive<br>strength | Bulk<br>density       | 5                                                                                | Sleeve - Anchor type                                                                                                                                         | Annex        |  |  |  |  |
| <u> </u>  |                                                                                                                     |                     | [mm]                                    | [N/mm <sup>2</sup> ]    | [kg/dm <sup>3</sup> ] |                                                                                  |                                                                                                                                                              |              |  |  |  |  |
| Clay      | masonry unit                                                                                                        | s according EN 771  | -1                                      |                         |                       |                                                                                  |                                                                                                                                                              |              |  |  |  |  |
| 8         | Clay hollow<br>brick<br>BGV Thermo                                                                                  |                     | 500<br>200<br>314                       | 4<br>6<br>10            | 0,6                   | SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13                         | 9 – M8<br>5 – M8/M10/IG-M6<br>80 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>80 – M12/M16/IG-M8/IG-M10                                                     | C24 -<br>C26 |  |  |  |  |
| 9         | Clay hollow<br>brick<br>Calibric R+                                                                                 |                     | 500<br>200<br>314                       | 6<br>9<br>12            | 0,6                   | SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13                         | 9 – M8<br>5 – M8/M10/IG-M6<br>80 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>80 – M12/M16/IG-M8/IG-M10                                                     | C27-<br>C29  |  |  |  |  |
| 10        | Clay hollow<br>brick<br>Urbanbric                                                                                   |                     | 560<br>200<br>274                       | 6<br>9<br>12            | 0,7                   | SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13                         | 9 – M8<br>5 – M8/M10/IG-M6<br>30 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>30 – M12/M16/IG-M8/IG-M10                                                     | C30 -<br>C32 |  |  |  |  |
| 11        | Clay hollow<br>brick<br>Brique<br>creuse C40                                                                        | H                   | 500<br>200<br>200                       | 4<br>8<br>12            | 0,7                   | SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13                         | 9 – M8<br>5 – M8/M10/IG-M6<br>80 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>80 – M12/M16/IG-M8/IG-M10                                                     | C33 -<br>C35 |  |  |  |  |
| 12        | Clay hollow<br>brick<br>Blocchi<br>Leggeri                                                                          |                     | 250<br>120<br>250                       | 4<br>6<br>8<br>12       | 0,6                   | SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13<br>SH 20x20             | 0 – M8<br>5 – M8/M10/IG-M6<br>30 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>30 – M12/M16/IG-M8/IG-M10<br>30 – M12/M16/IG-M8/IG-M10                        | C36 -<br>C38 |  |  |  |  |
| 13        | Clay hollow<br>brick<br>Doppio Uni                                                                                  |                     | 250<br>120<br>120                       | 10<br>16<br>20<br>28    | 0,9                   | SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13<br>SH 20x20             | 0 – M8<br>5 – M8/M10/IG-M6<br>30 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>30 – M12/M16/IG-M8/IG-M10<br>30 – M12/M16/IG-M8/IG-M10                        | C39 -<br>C41 |  |  |  |  |
| Ligh      | t weight cond                                                                                                       | rete according EN 7 | 71-3                                    |                         |                       | 1.00                                                                             |                                                                                                                                                              |              |  |  |  |  |
| 14        | Hollow light<br>weight<br>concrete<br>Bloc creux<br>B40                                                             |                     | 494<br>200<br>190                       | 4                       | 0,8                   | SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13                         | 0 – M8<br>5 – M8/M10/IG-M6<br>80 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>80 – M12/M16/IG-M8/IG-M10                                                     | C42 -<br>C43 |  |  |  |  |
| 15        | Solid light<br>weight<br>concrete                                                                                   |                     | 300<br>123<br>248                       | 2                       | 0,6                   | M8/M10/N<br>SH 12x80<br>SH 16x85<br>SH 16x13<br>SH 20x85<br>SH 20x13<br>SH 20x20 | M12/M16/IG-M6/IG-M8/IG-M10<br>– M8<br>– M8/M10/IG-M6<br>0 – M8/M10/IG-M6<br>5 – M12/M16/IG-M8/IG-M10<br>0 – M12/M16/IG-M8/IG-M10<br>0 – M12/M16/IG-M8/IG-M10 | C44 -<br>C45 |  |  |  |  |
| E         | SSVE Inject                                                                                                         | ion system ONE, (   | Annex B 3                               |                         |                       |                                                                                  |                                                                                                                                                              |              |  |  |  |  |
|           | inch types all                                                                                                      |                     | espondinț                               | g astering elem         | ente                  |                                                                                  |                                                                                                                                                              |              |  |  |  |  |



Installation: Steel Brush RBT  $d_{b}$ Table B2: Installation parameters in autoclaved aerated concrete AAC and solid masonry (without sleeve) IG-M10 Anchor size M8 M10 IG-M6 M12 IG-M8 M16 Nominal drill hole diameter  $d_0$ [mm] 10 12 14 18 Drill hole depth 80 90 100 100  $h_0$ [mm] 100 Effective anchorage depth 80 90 100 h<sub>ef</sub> [mm] Minimum wall thickness  $h_{ef} + 30$ [mm]  $h_{min}$ Diameter of clearance d<sub>f</sub> ≤ 9 12 7 14 9 18 12 [mm] hole in the fixture RBT18 RBT10 RBT12 RBT14 Diameter of steel brush 12 14 16 20  $d_{b}$ [mm] Minimum diameter of steel brush 12,5 d<sub>b.min</sub> 10,5 14,5 18,5 [mm] 2 (14 for Mz DF) Max installation torque moment [Nm] T<sub>inst,max</sub>

# Table B3: Installation parameters in solid and hollow masonry (with sleeve)

| Ancherciza                                |                       | MO     | M8 / M10 / IG-M6 M12 / M16 / IG-M |                                  |            |                                                  |        |                 |  |  |
|-------------------------------------------|-----------------------|--------|-----------------------------------|----------------------------------|------------|--------------------------------------------------|--------|-----------------|--|--|
| Anchor size                               |                       |        | 1018                              |                                  | 0 / IG-IN6 |                                                  |        |                 |  |  |
|                                           | \$                    | Sleeve | 12x80                             | 16x85                            | 16x130     | 20x85                                            | 20x130 | 20x200          |  |  |
| Nominal drill hole diameter               | do                    | [mm]   | 12                                | 16                               | 16         | 20                                               | 20     | 20              |  |  |
| Drill hole depth                          | ho                    | [mm]   | 85                                | 90                               | 135        | 90                                               | 135    | 205             |  |  |
| Effective anchorage depth                 | h <sub>ef</sub>       | [mm]   | 80                                | 85                               | 130        | 85                                               | 130    | 200             |  |  |
| Minimum wall thickness                    | $\mathbf{h}_{min}$    | [mm]   | 115                               | 115                              | 175        | 115                                              | 175    | 240             |  |  |
| Diameter of clearance hole in the fixture | d <sub>f</sub> ≤      | [mm]   | 9                                 | 7 (IG-M6) /<br>9 (M8) / 12 (M10) |            | 9 (IG-M8) / 12 (IG-M10) /<br>14 (M12) / 18 (M16) |        | -M10) /<br>/16) |  |  |
| Diameter of steel bruch                   |                       |        | RBT12                             | RB                               | T16        |                                                  | RBT20  |                 |  |  |
|                                           | d <sub>b</sub>        | [mm]   | 14                                | 1                                | 8          |                                                  | 22     |                 |  |  |
| Minimum diameter of steel brush           | d <sub>b,min</sub>    | [mm]   | 12,5                              | 16                               | 6,5        |                                                  | 20,5   |                 |  |  |
| Max installation torque moment            | T <sub>inst,max</sub> | [Nm]   |                                   |                                  | 2          | 2                                                |        |                 |  |  |

#### ESSVE Injection system ONE, ONE ICE for masonry

#### **Intended Use**

Installation parameters and cleaning brush

Annex B 4



| Table B4: Maximum working time and minimum curing time<br>ESSVE ONE                                                                                                             |                             |                         |                                                        |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|--------------------------------------------------------|--|--|--|--|--|--|
| Temperature in the base material T                                                                                                                                              | Temperature of<br>cartridge | Gelling- / working time | Minimum curing time in dry base material 1)            |  |  |  |  |  |  |
| 0°C to + 4 °C                                                                                                                                                                   | •                           | 45 min                  | 7 h                                                    |  |  |  |  |  |  |
| + 5 °C to + 9 °C                                                                                                                                                                |                             | 25 min                  | 2 h                                                    |  |  |  |  |  |  |
| + 10 °C to + 19 °C                                                                                                                                                              |                             | 15 min                  | 80 min                                                 |  |  |  |  |  |  |
| + 20 °C to + 29 °C                                                                                                                                                              | +5°C to +40°C               | 6 min                   | 45 min                                                 |  |  |  |  |  |  |
| + 30 °C to + 34 °C                                                                                                                                                              |                             | 4 min                   | 25 min                                                 |  |  |  |  |  |  |
| + 35 °C to + 39 °C                                                                                                                                                              |                             | 2 min 20 min            |                                                        |  |  |  |  |  |  |
| + 40°C                                                                                                                                                                          |                             | 1.5 min                 | 15 min                                                 |  |  |  |  |  |  |
| <ul> <li><sup>1)</sup> In wet base material the curing time <u>must</u> be doubled</li> <li>Table B5: Maximum working time and minimum curing time<br/>ESSVE ONE ICE</li> </ul> |                             |                         |                                                        |  |  |  |  |  |  |
| Temperature in the<br>base material T                                                                                                                                           | Temperature of<br>cartridge | Gelling- / working time | Minimum curing time in dry base material <sup>1)</sup> |  |  |  |  |  |  |
| 0 °C to +4 °C                                                                                                                                                                   |                             | 10 min                  | 2,5 h                                                  |  |  |  |  |  |  |
| + 5 °C to + 9 °C                                                                                                                                                                | 0°C to +10°C                | 6 min                   | 80 min                                                 |  |  |  |  |  |  |
| + 10°C                                                                                                                                                                          |                             | 6 min                   | 60 min                                                 |  |  |  |  |  |  |
|                                                                                                                                                                                 |                             |                         |                                                        |  |  |  |  |  |  |
| ESSVE Injection syst                                                                                                                                                            | em ONE, ONE ICE for ma      | sonry                   | Annex B 5                                              |  |  |  |  |  |  |
| Gelling and Curing time                                                                                                                                                         | es                          |                         |                                                        |  |  |  |  |  |  |







#### Installation in solid and hollow masonry (with sleeve)

3. Holes to be drilled perpendicular to the surface of the base material by using a hardmetal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 – C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.



Blow out from the bottom of the bore hole two times. Attach the appropriate sized brush (>  $d_{b,min}$  Table B3) to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.



5. Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use



6. Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions. Observe the gel-/ working times given in Annex B 5.





7. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.



- 8. Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 5).
- In After full curing, the fixture can be installed with up to the max. installation torque (see Annex B4) by using a calibrated torque wrench.

# ESSVE Injection system ONE, ONE ICE for masonry

#### **Intended Use**

Installation instructions hollow brick

Annex B 7



| Brick-No                    | Installation & Use      |                       |            | β-fa                  | ctor       |                       |            |
|-----------------------------|-------------------------|-----------------------|------------|-----------------------|------------|-----------------------|------------|
| and                         | category                | T <sub>a</sub> : 40°0 | C / 24°C   | Т <sub>ь</sub> : 80°( | C / 50°C   | T <sub>c</sub> : 120° | C / 72°(   |
| abbreviation                |                         | d/d                   | w/d<br>w/w | d/d                   | w/d<br>w/w | d/d                   | w/d<br>w/w |
| 1<br>AAC6                   | For all sizes           | 0,95                  | 0,86       | 0,81                  | 0,73       | 0,81                  | 0,73       |
| 2                           | d₀ ≤ 14 mm              | 0,93                  | 0,80       | 0,87                  | 0,74       | 0,65                  | 0,56       |
| KS-NF                       | d₀ ≥ 16 mm              | 0,93                  | 0,93       | 0,87                  | 0,87       | 0,65                  | 0,65       |
| 3                           | d₀ ≤ 12 mm              | 0,93                  | 0,80       | 0,87                  | 0,74       | 0,65                  | 0,56       |
| KSL-3DF                     | d₀ ≥ 16 mm              | 0,93                  | 0,93       | 0,87                  | 0,87       | 0,65                  | 0,65       |
| 4                           | d₀ ≤ 12 mm              | 0,93                  | 0,80       | 0,87                  | 0,74       | 0,65                  | 0,56       |
| KSL-12DF                    | d₀ ≥ 16 mm              | 0,93                  | 0,93       | 0,87                  | 0,87       | 0,65                  | 0,65       |
| 5<br>MZ-DF                  |                         |                       |            |                       |            |                       |            |
| 6<br>Hlz-16DF               |                         |                       |            |                       |            |                       |            |
| 7<br>Porotherm Homebric     |                         |                       |            |                       |            |                       |            |
| 8<br>BGV-Thermo             |                         |                       |            |                       | 0,86       | 0,73                  | 0,7        |
| 9<br>Calibric R+            | For all sizes           | 0,86                  | 0,86       | 0,86                  |            |                       |            |
| 10<br>Urbanbric             |                         |                       |            |                       |            |                       |            |
| 11<br>Brique creuse C40     |                         |                       |            |                       |            |                       |            |
| 12<br>Blocchi Leggeri       |                         |                       |            |                       |            |                       |            |
| 13<br>Doppio Uni            |                         |                       |            |                       |            |                       |            |
| 14                          | d₀ ≤ 12 mm              | 0,93                  | 0,80       | 0,87                  | 0,74       | 0,65                  | 0,56       |
| Bloc creux B40              | d₀ ≥ 16 mm              | 0,93                  | 0,93       | 0,87                  | 0,87       | 0,65                  | 0,6        |
| 15                          | d₀ ≤ 12 mm              | 0,93                  | 0,80       | 0,87                  | 0,74       | 0,65                  | 0,56       |
| Solid light weight concrete | $d_0 \ge 16 \text{ mm}$ | 0.93                  | 0.93       | 0.87                  | 0.87       | 0.65                  | 0.67       |

 $\beta$ -factors for job site testing under tension load

Г



| Table C2: Characteristic steel resis        | tance              |               |       |       |        |    |              |     |     |
|---------------------------------------------|--------------------|---------------|-------|-------|--------|----|--------------|-----|-----|
| Size                                        |                    |               | IG-M6 | IG-M8 | IG-M10 | M8 | M10          | M12 | M16 |
| Characteristic tension resistance           |                    |               |       |       |        |    |              |     |     |
| steel property class 4.6                    | N <sub>Rk,s</sub>  | [kN]          | -     | -     | -      | 15 | 23           | 34  | 63  |
|                                             | γMs                | [-]           |       | -     |        |    | 2,           | 0   |     |
| steel, property class 4.8                   | N <sub>Rk,s</sub>  | [kN]          | -     | -     | -      | 15 | 23           | 34  | 63  |
|                                             | γMs                | [-]           |       | -     |        |    | 1,           | 5   |     |
| steel, property class 5.6                   | N <sub>Rk,s</sub>  | [kN]          | 10    | 18    | 29     | 18 | 29           | 42  | 79  |
|                                             | γMs                |               | 10    | 2,0   |        |    | 2,           | 0   |     |
| steel, property class 5.8                   | N <sub>Rk,s</sub>  |               | 10    | 1/    | 29     | 18 | 29           | 42  | /9  |
|                                             | γ <sub>Ms</sub>    | [-]           | 10    | 1,5   | 40     |    | 1,           | 5   | 100 |
| steel, property class 8.8                   | N <sub>Rk,s</sub>  |               | 16    | 27    | 46     | 29 | 46           | 6/  | 126 |
|                                             | γ <sub>Ms</sub>    |               | 14    | 1,5   | 41     | 06 | I,           | 5   | 110 |
| Stainless steel A4 / HCR, property class 70 | IN <sub>Rk,s</sub> |               | 14    | 1 97  | 41     | 20 | 41           | 29  |     |
|                                             | γ <sub>Ms</sub>    |               | 16    | 1,07  | 46     | 20 | 1,0          | 67  | 126 |
| Stainless steel A4 / HCR, property class 80 | IN <sub>Rk,s</sub> |               | 10    | 1.6   | 40     | 29 | 40           | 6   | 120 |
| Characteristic chase registeres             | γMs                | [ [-]         |       | 1,0   |        |    | 1,           | 0   |     |
|                                             |                    | <b>FI N I</b> | 1     | 1     |        |    |              |     |     |
| steel, property class 4.6                   | V <sub>Rk,s</sub>  |               | -     | -     | -      | 7  | 12           | 17  | 31  |
|                                             | ΎMs                | [-]           |       | -     | 1      |    | 1,6          | 57  |     |
| steel, property class 4.8                   | V <sub>Rk,s</sub>  |               | -     | -     | -      | /  | 12           | 1/  | 31  |
|                                             | γMs                |               |       | -     | 15     | 0  | 1,2          | 25  | 00  |
| steel, property class 5.6                   | V <sub>Rk,s</sub>  |               | 5     | 1.67  | 15     | 9  | _ 15<br>_ 1( | 21  | 39  |
|                                             | γ <sub>Ms</sub>    |               | 5     | 1,67  | 15     | 0  | 15           | 21  | 30  |
| steel, property class 5.8                   | V Rk,s             |               | 5     | 1 25  | 15     | 9  | 1 1          | 25  | 39  |
|                                             | YMs<br>V_          |               | 8     | 1/    | 23     | 15 | 23           | 20  | 63  |
| steel, property class 8.8                   | V Rk,s             |               | 0     | 1 25  | 25     | 10 | 1 20         | 25  | 00  |
|                                             | V Dia              | [kN]          | 7     | 13    | 20     | 13 | 20           | 30  | 55  |
| Stainless steel A4 / HCR, property class 70 | V HK,S             | [-]           | ,     | 1.56  | 20     | 10 | 1!           | 56  | 00  |
|                                             |                    | [kN]          | 8     | 15    | 23     | 15 | 23           | 34  | 63  |
| Stainless steel A4 / HCR, property class 80 | VMc                | [-]           |       | 1.33  |        |    | 1.3          | 33  |     |
| Characteristic bending moment               | 11115              |               |       | .,    |        |    | .,.          |     |     |
|                                             | M <sub>Bk.s</sub>  | [Nm]          | -     | -     | -      | 15 | 30           | 52  | 133 |
| steel, property class 4.6                   | γ <sub>Ms</sub>    | [-]           |       | -     |        |    | 1,6          | 57  |     |
|                                             | M <sub>Bk.s</sub>  | [Nm]          | -     | -     | -      | 15 | 30           | 52  | 133 |
| steel, property class 4.8                   | γ <sub>Ms</sub>    | [-]           |       | -     |        |    | 1,2          | 25  |     |
|                                             | M <sub>Bk.s</sub>  | [Nm]          | 8     | 19    | 37     | 19 | 37           | 66  | 167 |
| steel, property class 5.6                   | γMs                | [-]           |       | 1,67  |        |    | 1,6          | 57  |     |
| eteol, property close E 9                   | M <sub>Rk.s</sub>  | [Nm]          | 8     | 19    | 37     | 19 | 37           | 66  | 167 |
| steer, property class 5.8                   | γMs                | [-]           |       | 1,25  |        |    | 1,2          | 25  |     |
| steel property class 8.8                    | M <sub>Rk,s</sub>  | [Nm]          | 12    | 30    | 60     | 30 | 60           | 105 | 266 |
|                                             | γ́Ms               | [-]           |       | 1,25  |        |    | 1,2          | 25  |     |
| Stainless steel A4 / HCB, property class 70 | M <sub>Rk,s</sub>  | [Nm]          | 11    | 26    | 52     | 26 | 52           | 92  | 233 |
| otamess steel A4 / Hon, property class 70   | γMs                | [-]           |       | 1,56  |        |    | 1,           | 56  |     |
| Stainless steel A4 / HCB, property class 80 | $M_{Rk,s}$         | [Nm]          | 12    | 30    | 60     | 30 | 60           | 105 | 266 |
| orallioss stor A+ / Hort, property class of | γ́Ms               | [-]           |       | 1,33  |        |    | 1,:          | 33  |     |

# ESSVE Injection system ONE, ONE ICE for masonry

#### Performances

Characteristic resistance under tension and shear load - steel failure



| Spacing and edge distances                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              | min                                                                                               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                   | stic edge distance<br>Edge distance<br>stic spacing<br>spacing<br>stic (minimum) spacing for<br>stic (minimum) spacing for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anchors placed parallel to<br>anchors placed perpendio                                                                                                                                                       | bed joint<br>cular to bed joint                                                                   |
| Load direction<br>Anchor                                                                                                                                                                                                                                                                                                                                                               | Tension load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shear load parallel to free<br>edge                                                                                                                                                                          | e Shear load perpendicular<br>to free edge                                                        |
| Anchors places parallel to bed joint $s_{cr,II}$ ; ( $s_{min,II}$ )                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |
| Anchors places perpendicular to bed joint $s_{cr, \perp;}(s_{min, \perp})$                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |
| $\begin{array}{lll} \alpha_{g,N,\parallel} = & Group \mbox{ factor in } \\ \alpha_{g,V,\parallel} = & Group \mbox{ factor in } \\ \alpha_{g,N,\perp} = & Group \mbox{ factor in } \\ \alpha_{g,V,\perp} = & Group \mbox{ factor in } \\ Group \mbox{ of two anchors: } & N^g_{Rk} \\ Group \mbox{ of four anchors: } & N^g_{Rk} \\ & (N_{Rk}) \\ & (W_{Rk}) \\ & (W_{Rk}) \end{array}$ | case of tension load for an<br>case of shear load for and<br>case of tension load for an<br>case of shear load for and<br>case of shear load for and<br>$\alpha = \alpha_{g,N} * N_{RK}$<br>$\alpha = \alpha_{g,N,II} * \alpha_{g,N,\perp} * N_{RK}$ | hchors placed parallel to the<br>shors placed parallel to the<br>hchors placed perpendicular<br>and $V^g_{Rk} = \alpha_{g,V} * V_{Rl}$<br>and $V^g_{Rk} = \alpha_{g,V,II} * \alpha$<br>for c <sub>cr</sub> ) | the bed joint<br>bed joint<br>ar to the bed joint<br>to the bed joint<br>$c_{g,V,\perp} * V_{Rk}$ |
| ESSVE Injection system ONE,<br>Performances<br>Edge distance and anchor spacin                                                                                                                                                                                                                                                                                                         | ONE ICE for masonry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                              | Annex C 3                                                                                         |



| Brick type: Autoclaved Aerat                                                           | ed C             | Concrete – AAC6                               |           |          |                 |                         |       |            |
|----------------------------------------------------------------------------------------|------------------|-----------------------------------------------|-----------|----------|-----------------|-------------------------|-------|------------|
| Table C3: Description of the br                                                        | ick              |                                               |           |          |                 |                         |       |            |
| Brick type                                                                             |                  | Autoclaved Aerate                             | d Concr   | ete      |                 |                         |       |            |
| Bulk density ρ [kg/di                                                                  | n <sup>3</sup> ] | 0,6                                           |           |          |                 |                         |       |            |
| Compressive strength $f_b \ge [N/m]$                                                   | n²]              | 6                                             |           |          |                 |                         | Der   | -          |
| Code                                                                                   |                  | EN 771-4                                      |           |          |                 |                         |       |            |
| Producer (country code)                                                                |                  | e.g. Porit (DE)                               |           |          |                 |                         |       |            |
| Brick dimensions                                                                       | ml               | 499 x 240 x 249                               |           |          |                 |                         |       | _          |
| Drilling method                                                                        | ]                | Botary                                        |           |          |                 |                         |       |            |
| 2 milling motion                                                                       |                  | riotary                                       |           |          |                 |                         |       |            |
| Table C4: Installation parameter                                                       | r                |                                               |           |          |                 |                         |       |            |
| Anchor size                                                                            |                  |                                               | [-]       | M8       | M10/IG-M6       | M12/IG                  | i-M8  | M16/IG-M10 |
| Effective anchorage depth                                                              |                  |                                               | [mm]      | 80       | 90              | 100                     | )     | 100        |
| Edge distance                                                                          | Ccr              | (<br>(                                        | [mm]      |          |                 | 1,5*h <sub>ef</sub>     |       | 101100-010 |
|                                                                                        | Cm               | in,N                                          | [mm]      |          |                 | 75                      |       |            |
| Minimum edge distance                                                                  | Cm               | in,∨,II (C <sub>min,v</sub> ,⊥) <sup>1)</sup> | [mm]      |          |                 | 75 (1,5*h <sub>ef</sub> | )     |            |
| Spacing                                                                                | Scr              |                                               | [mm]      |          |                 | 3*h <sub>ef</sub>       |       |            |
| Minimum spacing                                                                        | Sm               | in                                            | [mm]      |          |                 | 100                     |       |            |
| <sup>1)</sup> C <sub>min,V,II</sub> for shear loading parallel                         | o the            | free edge; $C_{min,v, \perp}$ for             | shear loa | ding pe  | rpendicular the | free edge               |       |            |
|                                                                                        |                  |                                               |           |          |                 |                         |       |            |
| Table C5: Group factor for anch                                                        | or g             | roup in case of tens                          | sion loa  | ding     |                 |                         |       |            |
| Configuration                                                                          |                  | •                                             |           |          | with a >        | 1                       |       |            |
|                                                                                        |                  | 125 (M9:120)                                  |           | V        | 100             |                         |       | 10         |
| parallel to horizontal                                                                 |                  | 123 (108.120)                                 |           |          | 100             | ααΝΙΙ                   |       | 1,0        |
| joint                                                                                  |                  | 1,5*het                                       |           |          | 3*hef           | 31.11.                  | [-]   | 2,0        |
| ⊥: anchors placed                                                                      |                  | 75                                            |           |          | 100             |                         |       | 1,4        |
| horizontal joint                                                                       |                  | 1,5*hef                                       |           |          | 3*hef           | α <sub>g,N,⊥</sub>      |       | 2,0        |
| , , , , , , , , , , , , , , , , , , , ,                                                |                  |                                               |           |          |                 |                         |       |            |
| Table C6: Group factor for anch                                                        | or g             | roup in case of she                           | ar loadi  | ng par   | allel to free e | dge                     |       |            |
| Configuration                                                                          |                  | with c ≥                                      |           | <u>v</u> | vith s ≥        |                         |       |            |
| II: anchors placed                                                                     | 14.5             | 75                                            |           |          | 100             |                         |       | 1,2        |
| parallel to horizontal                                                                 |                  | 1.5*hef                                       |           |          | 3*hef           | α <sub>g,V,II</sub>     |       | 20         |
| joint                                                                                  |                  | 1,0 1101                                      |           |          |                 |                         | [-]   | 2,0        |
| L: anchors placed<br>perpendicular to<br>horizontal joint                              |                  | 1,5*hef                                       |           |          | 3*hef           | $\alpha_{g,V,\perp}$    |       | 2,0        |
|                                                                                        |                  |                                               |           |          |                 |                         |       |            |
| ESSVE Injection system ONE,<br>Performances Autoclaved Aer<br>Description of the brick | ONE<br>ated      | E ICE for masonry<br>Concrete - AAC6          |           |          |                 | An                      | nex C | 4          |
| Installation parameters                                                                |                  |                                               |           |          |                 |                         |       |            |



| Brick type:<br>Table C7: G                                                                                                                                                                                          | Autoclave                                                      | d Aera<br>for and   | ated (<br>chor c  | Concret<br>proup in                    | e –<br>case       | AAC6<br>e of shear | · lo | ading p             | erpe    | ndicu                                                                                   | ar to                          | free ed                       | qe   |                   |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|-------------------|----------------------------------------|-------------------|--------------------|------|---------------------|---------|-----------------------------------------------------------------------------------------|--------------------------------|-------------------------------|------|-------------------|-------------------|
| (                                                                                                                                                                                                                   | Configuration                                                  |                     |                   | •                                      | wit               | hc≥                |      | 51                  | with    | s ≥                                                                                     |                                |                               |      |                   |                   |
| II: anchors pl<br>parallel to hori<br>joint                                                                                                                                                                         | laced<br>izontal                                               | V-••                | •                 | 1,5*hef 3,0*hef                        |                   |                    |      |                     |         |                                                                                         | α <sub>g,V,II</sub>            | II [-]                        |      | 2,0               |                   |
| ⊥: anchors p<br>perpendicula<br>horizontal j                                                                                                                                                                        | laced ar to oint                                               |                     | •                 |                                        | 1,5               | 5*hef              |      |                     | 3,0'    | 'hef                                                                                    |                                | $lpha_{g,V,\perp}$            | [-]  |                   | 2,0               |
| Table C8: Characteristic values of resistance under tension and shear loads                                                                                                                                         |                                                                |                     |                   |                                        |                   |                    |      |                     |         |                                                                                         |                                |                               |      |                   |                   |
|                                                                                                                                                                                                                     |                                                                |                     |                   |                                        |                   | Cł                 | nara | acteristi           | c resi  | stance                                                                                  | )                              |                               |      |                   |                   |
|                                                                                                                                                                                                                     |                                                                |                     |                   |                                        |                   |                    |      | Use ca              | tegor   | у                                                                                       |                                |                               |      |                   | al / al           |
|                                                                                                                                                                                                                     | Effective                                                      |                     | d/d               |                                        |                   |                    |      |                     | w.<br>W | /w<br>/d                                                                                |                                |                               |      | d/d<br>w/d<br>w/w |                   |
| Anchor size                                                                                                                                                                                                         | anchorage<br>depth                                             | 40°C/               | 24°C              | C 80°C/50°C 120°C/72°C 40°C/24°C 80°C/ |                   |                    |      | /50°C               | 120°C/  | /72°C                                                                                   | ter                            | For all<br>nperature<br>range |      |                   |                   |
|                                                                                                                                                                                                                     | h <sub>ef</sub>                                                |                     |                   | $N_{Rk,b} = N$                         | Rk,p <sup>1</sup> | )                  |      |                     |         | N <sub>Rk,b</sub> =                                                                     | N <sub>Rk,p</sub> <sup>1</sup> | )                             |      |                   | $V_{Rk,b}^{2)3)}$ |
|                                                                                                                                                                                                                     | [mm]                                                           |                     |                   |                                        |                   |                    |      | [k]                 | ۱]      |                                                                                         |                                |                               |      |                   |                   |
|                                                                                                                                                                                                                     |                                                                |                     |                   | Compre                                 | essiv             | ve strengt         | h f  | <sub>b</sub> ≥ 6 N/ | mm²     |                                                                                         |                                |                               |      |                   |                   |
| M8                                                                                                                                                                                                                  | 80                                                             | 2,5 (               | 2,0)              | 2,5 (1,                                | 5)                | 2,0 (1,2)          | )    | 2,5 (1              | ,5)     | 2,0                                                                                     | (1,5)                          | 1,5 (                         | 1,2) |                   | 6,0               |
| M10/IG-M6                                                                                                                                                                                                           | 90                                                             | 4,0 (               | 2,5)              | 3,0 (2,                                | 0)                | 2,5 (1,5           | )    | 3,5 (2              | 2,5)    | 3,0                                                                                     | (2,0)                          | 2,5 (                         | 1,5) |                   | 10,0              |
| M12/IG-M8                                                                                                                                                                                                           | 100                                                            | 5,0 (               | 3,5)              | 4,0 (3,                                | 0)                | 3,0 (2,5           | )    | 4,5 (3              | ,0)     | 3,5                                                                                     | (2,5)                          | 3,0 (2                        | 2,5) |                   | 10,0              |
| M16/IG-M10                                                                                                                                                                                                          | 100                                                            | 6,5 (               | 4,5)              | 5,5 (3,                                | 5)                | 4,0 (3,0)          | )    | 5,5 (4              | ,0)     | 5,0                                                                                     | (3,5)                          | 4,0 (                         | 3,0) |                   | 10,0              |
| <sup>2)</sup> For calcul<br><sup>3)</sup> The value<br>Table C9: D                                                                                                                                                  | ation of V <sub>Rk,c</sub> s<br>s are valid for<br>Displacemen | see ETA<br>steel 5. | .G029,<br>6 or gr | Annex C<br>eater. For                  | stee              | el 4.6 and 4.      | .8 m | nultiply V          | Rk,b by | y 0,8                                                                                   |                                |                               |      |                   |                   |
| • · ·                                                                                                                                                                                                               | h <sub>ef</sub>                                                | Ν                   | δ                 | N / N                                  |                   | δΝΟ                | i    | δN∞                 |         | V                                                                                       |                                | δνο                           |      |                   | δ∨∞               |
| Anchor size                                                                                                                                                                                                         | [mm]                                                           | [kN]                | [m                | m/kN]                                  |                   | [mm]               | [    | mm]                 | []      | <n]< td=""><td></td><td>[mm]</td><td></td><td><math>\top</math></td><td>[mm]</td></n]<> |                                | [mm]                          |      | $\top$            | [mm]              |
| M8                                                                                                                                                                                                                  | 80                                                             | 0.9                 |                   |                                        |                   | 0,16               | (    | ),32                | 1       | .3                                                                                      |                                | 0.8                           |      | +                 | 1.20              |
| M10/IG-M6                                                                                                                                                                                                           | 90                                                             | 1.4                 |                   | 0,18                                   |                   | 0.26               | (    | ).51                |         | .8                                                                                      |                                | 1.2                           |      | +                 | 1.80              |
| M12/IG-M8                                                                                                                                                                                                           | 100                                                            | 1.8                 |                   |                                        |                   | 0.14               | - (  | ).29                |         | 2.1                                                                                     |                                | 1 4                           |      | +                 | 2.10              |
| M16/IG-M10                                                                                                                                                                                                          | 100                                                            | 2.3                 | 0                 | 0,08                                   |                   | 0.19               | (    | ) 37                |         | -, '<br>> 3                                                                             |                                | 1.5                           |      | -                 | 2 25              |
| ESSVE Injection system ONE ONE ICE for masonry                                                                                                                                                                      |                                                                |                     |                   |                                        |                   |                    |      |                     |         |                                                                                         |                                |                               |      |                   |                   |
| ESSVE Injection system ONE, ONE ICE for masonry Performances Autoclaved Aerated Concrete – AAC6 Installation parameters (continue) Characteristic values of resistance under tension and shear load / Displacements |                                                                |                     |                   |                                        |                   |                    |      | Annex C 5           |         |                                                                                         |                                |                               |      |                   |                   |



| Brick type: Calcium silicate solid brick KS-NF |                                       |  |  |  |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|--|--|
| Table C10: Description of the brick            |                                       |  |  |  |  |  |  |  |  |  |
| Brick type                                     | Calcium silicate solid brick<br>KS-NF |  |  |  |  |  |  |  |  |  |
| Bulk density $\rho$ [kg/dm <sup>3</sup> ] 2,0  |                                       |  |  |  |  |  |  |  |  |  |
| Compressive strength $f_b \ge [N/mm^2]$        |                                       |  |  |  |  |  |  |  |  |  |
| Code                                           | EN 771-2                              |  |  |  |  |  |  |  |  |  |
| Producer (country code)                        | e.g. Wemding (DE)                     |  |  |  |  |  |  |  |  |  |
| Brick dimensions [mm]                          | 240 x 115 x 71                        |  |  |  |  |  |  |  |  |  |
| Drilling method                                | Hammer                                |  |  |  |  |  |  |  |  |  |
| Table C11. Installation personator             |                                       |  |  |  |  |  |  |  |  |  |
|                                                |                                       |  |  |  |  |  |  |  |  |  |
| Anchor size                                    | All sizes                             |  |  |  |  |  |  |  |  |  |

| Anchor Size           |                  | [-]  | All Sizes           |
|-----------------------|------------------|------|---------------------|
| Edge distance         | C <sub>cr</sub>  | [mm] | 1,5*h <sub>ef</sub> |
| Minimum edge distance | C <sub>min</sub> | [mm] | 60                  |
| Spacing               | Scr              | [mm] | 3*h <sub>ef</sub>   |
| Minimum spacing       | S <sub>min</sub> | [mm] | 120                 |
|                       |                  |      |                     |

### Table C12: Group factor for anchor group in case of tension loading

| Configura              | ation | with c ≥ | with s ≥          |                      |     |     |
|------------------------|-------|----------|-------------------|----------------------|-----|-----|
| II: anchors placed     |       | 60       | 120               |                      |     | 1,0 |
| parallel to horizontal | ••    | 140      | 120               | $\alpha_{g,N,II}$    |     | 1,5 |
| joint                  |       | 1,5*hef  | 3*h <sub>ef</sub> |                      | r ı | 2,0 |
| ⊥: anchors placed      |       | 60       | 120               |                      | [-] | 0,5 |
| perpendicular to       |       | 1,5*hef  | 120               | $\alpha_{g,N,\perp}$ |     | 1,0 |
| horizontal joint       |       | 1,5*hef  | 3*h <sub>ef</sub> |                      |     | 2,0 |

# Table C13: Group factor for anchor group in case of shear loading parallel to free edge

| Configura              | ation | with c ≥ | with s ≥          |                      |     |     |
|------------------------|-------|----------|-------------------|----------------------|-----|-----|
| II: anchors placed     |       | 60       | 120               |                      |     | 1,0 |
| parallel to horizontal |       | 115      | 120               | α <sub>g,V,II</sub>  |     | 1,7 |
| joint                  |       | 1,5*hef  | 3*h <sub>ef</sub> |                      | r 1 | 2,0 |
| ⊥: anchors placed      |       | 60       | 120               |                      | [-] | 1,0 |
| perpendicular to       | I V 🚦 | 1,5*hef  | 120               | $\alpha_{g,V,\perp}$ |     | 1,0 |
| horizontal joint       |       | 1,5*hef  | 3*h <sub>ef</sub> |                      |     | 2,0 |

#### Table C14: Group factor for anchor group in case of shear loading perpendicular to free edge

| Configura                            | ation | with c ≥ | with s ≥          |                     |            |     |
|--------------------------------------|-------|----------|-------------------|---------------------|------------|-----|
| II: anchors placed                   |       | 60       | 120               |                     |            | 1,0 |
| parallel to horizontal<br>joint      |       | 1,5*hef  | 3*h <sub>ef</sub> | α <sub>g,V,II</sub> | <b>1</b> 1 | 2,0 |
| ⊥: anchors placed                    |       | 60       | 120               |                     | [-]        | 1,0 |
| perpendicular to<br>horizontal joint |       | 1,5*hef  | 3*h <sub>ef</sub> | $lpha_{g,V,\perp}$  |            | 2,0 |
|                                      |       |          |                   |                     |            |     |

# ESSVE Injection system ONE, ONE ICE for masonry

#### Performances calcium solid brick KS-NF

Installation parameters

#### Deutsches Institut $\left| \right|$ für Bautechnik

| Brick            | type: Cal | cium silicat                    | e solid bri  | ick KS-NF             |                           |                        |                       |            |                                 |
|------------------|-----------|---------------------------------|--------------|-----------------------|---------------------------|------------------------|-----------------------|------------|---------------------------------|
| Table (          | C15: Cł   | naracteristic                   | values of re | esistance ι           | under tensio              | on and she             | ar loads              |            |                                 |
|                  |           |                                 |              |                       | Cha                       | racteristic r          | esistance             |            |                                 |
|                  |           |                                 |              |                       |                           | Use categ              | jory                  |            |                                 |
| Anchor           | Cleave    | Effective<br>anchorage<br>depth |              | d/d                   |                           |                        | w/d<br>w/w            |            | d/d<br>w/d<br>w/w               |
| size             | Sieeve    | h <sub>ef</sub> [mm]            | 40°C/24°C    | 80°C/50°C             | 120°C/72°C                | 40°C/24°C              | 80°C/50°C             | 120°C/72°C | For All<br>temperature<br>range |
|                  |           | h <sub>ef</sub>                 |              | $N_{Rk,b} = N_{Rk,p}$ | 1)                        |                        | $N_{Rk,b} = N_{Rk,p}$ | 1)         | $V_{Rk,b}^{(2)3)}$              |
|                  |           | [mm]                            |              |                       |                           | [kN]                   |                       |            |                                 |
|                  |           |                                 | Con          | npressive s           | strength f <sub>b</sub> ≥ | : 10 N/mm <sup>2</sup> |                       |            |                                 |
| M8               | -         | 80                              | 4,5 (2,0)    | 4,5 (2,0)             | 3,0 (1,5)                 | 3,5 (1,5)              | 3,5 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)                       |
| M10 /<br>IG-M6   | -         | 90                              | 4,5 (2,0)    | 4,5 (2,0)             | 3,0 (1,5)                 | 3,5 (1,5)              | 3,5 (1,5)             | 2,5 (1,2)  | 3,0 (2,0)                       |
| M12 /<br>IG-M8   | -         | 100                             | 4,5 (2,0)    | 4,5 (2,0)             | 3,0 (1,5)                 | 3,5 (1,5)              | 3,5 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)                       |
| M16 /<br>IG-M10  | -         | 100                             | 3,5 (1,5)    | 3,5 (1,5)             | 2,5 (1,2)                 | 3,0 (1,5)              | 3,5 (1,5)             | 2,0 (0,9)  | 2,5 (1,5)                       |
| M8               | 12x80     | 80                              | 3,5 (1,5)    | 3,5 (1,5)             | 2,5 (1,2)                 | 3,5 (1,5)              | 3,0 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)                       |
| M8 /             | 16x85     | 85                              | 3,5 (1,5)    | 3,0 (1,5)             | 2,0 (0,9)                 | 3,5 (1,5)              | 3,0 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)                       |
| M10/<br>IG-M6    | 16x130    | 130                             | 3,5 (1,5)    | 3,0 (1,5)             | 2,0 (0,9)                 | 3,5 (1,5)              | 3,0 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)                       |
| M12 /            | 20x85     | 85                              | 3,0 (1,5)    | 2,5 (1,2)             | 2,0 (0,9)                 | 3,0 (1,5)              | 2,5 (1,2)             | 2,0 (0,9)  | 2,5 (1,5)                       |
|                  | 20x130    | 130                             | 3,0 (1,5)    | 2,5 (1,2)             | 2,0 (0,9)                 | 3,0 (1,5)              | 2,5 (1,2)             | 2,0 (0,9)  | 2,5 (1,5)                       |
| IG-M87<br>IG-M10 | 20x200    | 200                             | 3,0 (1,5)    | 2,5 (1,2)             | 2,0 (0,9)                 | 3,0 (1,5)              | 2,5 (1,2)             | 2,0 (0,9)  | 2,5 (1,5)                       |
|                  |           |                                 | Con          | npressive s           | strength f <sub>b</sub> ≥ | 20 N/mm <sup>2</sup>   |                       |            |                                 |
| M8               | -         | 80                              | 6,0 (3,0)    | 5,5 (2,5)             | 4,0 (2,0)                 | 5,0 (2,5)              | 5,0 (2,5)             | 3,5 (1,5)  | 4,0 (2,5)                       |
| IG-M6            | -         | 90                              | 6,0 (3,0)    | 5,5 (2,5)             | 4,0 (2,0)                 | 5,0 (2,5)              | 5,0 (2,5)             | 3,5 (1,5)  | 4,5 (2,5)                       |
| M12/<br>IG-M8    | -         | 100                             | 6,0 (3,0)    | 5,5 (2,5)             | 4,0 (2,0)                 | 5,0 (2,5)              | 5,0 (2,5)             | 3,5 (1,5)  | 4,0 (2,5)                       |
| M16/<br>IG-M10   | -         | 100                             | 5,0 (2,5)    | 5,0 (2,5)             | 3,5 (1,5)                 | 5,0 (2,5)              | 5,0 (2,5)             | 3,5 (1,5)  | 4,0 (2,5)                       |
| M8               | 12x80     | 80                              | 5,5 (2,5)    | 5,0 (2,5)             | 3,5 (1,5)                 | 4,5 (2,0)              | 4,5 (2,0)             | 3,0 (1,5)  | 4,0 (2,5)                       |
| M8 /             | 16x85     | 85                              | 5,0 (2,5)    | 4,5 (2,0)             | 3,5 (1,5)                 | 5,0 (2,5)              | 4,5 (2,0)             | 3,5 (1,5)  | 4,0 (2,5)                       |
| M10/<br>IG-M6    | 16x130    | 130                             | 5,0 (2,5)    | 4,5 (2,0)             | 3,5 (1,5)                 | 5,0 (2,5)              | 4,5 (2,0)             | 3,5 (1,5)  | 4,0 (2,5)                       |
| M12 /            | 20x85     | 85                              | 4,0 (2,0)    | 4,0 (2,0)             | 3,0 (1,5)                 | 4,0 (2,0)              | 4,0 (2,0)             | 3,0 (1,5)  | 4,0 (2,5)                       |
|                  | 20x130    | 130                             | 4,0 (2,0)    | 4,0 (2,0)             | 3,0 (1,5)                 | 4,0 (2,0)              | 4,0 (2,0)             | 3,0 (1,5)  | 4,0 (2,5)                       |
| IG-M10           | 20x200    | 200                             | 4,0 (2,0)    | 4,0 (2,0)             | 3,0 (1,5)                 | 4,0 (2,0)              | 4,0 (2,0)             | 3,0 (1,5)  | 4,0 (2,5)                       |

Values are valid for  $c_{cr}$ , values in brackets are valid for single anchors with  $c_{min}$ For  $c_{cr}$  calculation of  $V_{Rk,c}$  see Technical Report TR 054; values in brackets  $V_{Rk,b} = V_{Rk,c}$  for single anchors with  $c_{min}$ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8 2)

3)

# ESSVE Injection system ONE, ONE ICE for masonry

# Performances calcium solid brick KS-NF

Characteristic values of resistance under tension and shear load



| Brick t           | ype: Cal | cium silicate                   | e solid bri | ck KS-NF              |                          |                      |                       |            |                                 |
|-------------------|----------|---------------------------------|-------------|-----------------------|--------------------------|----------------------|-----------------------|------------|---------------------------------|
| Table C           | :16: Ch  | aracteristic v                  | alues of re | esistance u           | Inder tensio             | n and shea           | ar loads (c           | ontinue)   |                                 |
|                   |          |                                 |             |                       | Cha                      | racteristic r        | esistance             |            |                                 |
|                   |          |                                 |             |                       |                          | Use categ            | jory                  |            |                                 |
| Anchor            | Sloovo   | Effective<br>anchorage<br>depth |             | d/d                   |                          |                      | w/d<br>w/w            |            | d/d<br>w/d<br>w/w               |
| size              | Sieeve   | h <sub>ef</sub> [mm]            | 40°C/24°C   | 80°C/50°C             | 120°C/72°C               | 40°C/24°C            | 80°C/50°C             | 120°C/72°C | For All<br>temperature<br>range |
|                   |          | h <sub>ef</sub>                 |             | $N_{Rk,b} = N_{Rk,c}$ | 1)                       |                      | $N_{Rk,b} = N_{Rk,p}$ | 1)         | $V_{Rk,b}^{(2)3)}$              |
|                   |          | [mm]                            |             |                       |                          | [kN]                 |                       |            |                                 |
|                   |          |                                 | Com         | pressive s            | trength f <sub>b</sub> ≥ | 27 N/mm <sup>2</sup> |                       |            |                                 |
| M8                | -        | 80                              | 7,0 (3,5)   | 6,5 (3,0)             | 5,0 (2,5)                | 6,0 (3,0)            | 5,5 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)                       |
| M10 /<br>IG-M6    | -        | 90                              | 7,0 (3,5)   | 6,5 (3,0)             | 5,0 (2,5)                | 6,0 (3,0)            | 5,5 (2,5)             | 4,0 (2,0)  | 5,5 (3,0)                       |
| M12 /<br>IG-M8    | -        | 100                             | 7,0 (3,5)   | 6,5 (3,0)             | 5,0 (2,5)                | 6,0 (3,0)            | 5,5 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)                       |
| M16 /<br>IG-M10   | -        | 100                             | 6,0 (3,0)   | 5,5 (2,5)             | 4,5 (2,0)                | 6,0 (3,0)            | 5,5 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)                       |
| M8                | 12x80    | 80                              | 6,5 (3,0)   | 6,0 (3,0)             | 4,5 (2,0)                | 5,5 (2,5)            | 5,0 (2,5)             | 3,5 (1,5)  | 4,5 (2,5)                       |
| M8 /              | 16x85    | 85                              | 5,5 (2,5)   | 5,0 (2,5)             | 4,0 (2,0)                | 5,5 (2,5)            | 5,0 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)                       |
| M10/<br>IG-M6     | 16x130   | 130                             | 5,5 (2,5)   | 5,0 (2,5)             | 4,0 (2,0)                | 5,5 (2,5)            | 5,0 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)                       |
| M12 /             | 20x85    | 85                              | 5,0 (2,5)   | 4,5 (2,0)             | 3,5 (1,5)                | 5,0 (2,5)            | 4,5 (2,0)             | 3,5 (1,5)  | 4,5 (2,5)                       |
| M16 /             | 20x130   | 130                             | 5,0 (2,5)   | 4,5 (2,0)             | 3,5 (1,5)                | 5,0 (2,5)            | 4,5 (2,0)             | 3,5 (1,5)  | 4,5 (2,5)                       |
| IG-M8 /<br>IG-M10 | 20x200   | 200                             | 5,0 (2,5)   | 4,5 (2,0)             | 3,5 (1,5)                | 5,0 (2,5)            | 4,5 (2,0)             | 3,5 (1,5)  | 4,5 (2,5)                       |

<sup>1)</sup> Values are valid for  $c_{cr}$ , values in brackets are valid for single anchors with  $c_{min}$ 

<sup>2)</sup> For c<sub>cr</sub> calculation of  $V_{Rk,c}$  see Technical Report TR 054; values in brackets  $V_{Rk,b} = V_{Rk,c}$  for single anchors with c<sub>min</sub>

<sup>3)</sup> The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8

#### Table C17: Displacements

| Anchor size     | Sleeve | Effective<br>anchorage<br>depth h <sub>ef</sub> | N    | δ <sub>N</sub> / N | δ <sub>N0</sub> | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δγ∞  |
|-----------------|--------|-------------------------------------------------|------|--------------------|-----------------|-----------------|------|---------------|------|
|                 |        | [mm]                                            | [kN] | [mm/kN]            | [mm]            | [mm]            | [kN] | [mm]          | [mm] |
| M8              | -      | 80                                              |      |                    |                 |                 | 1,7  | 0,90          | 1,35 |
| M10 /<br>IG-M6  | -      | 90                                              | 2,0  |                    | 0,30            | 0,60            | 2,0  | 1,10          | 1,65 |
| M12 /<br>IG-M8  | -      | 100                                             |      |                    |                 |                 |      |               |      |
| M16 /<br>IG-M10 | -      | 100                                             | 1,7  | 0.15               | 0,26            | 0,51            |      |               |      |
| M8              | 12x80  | 80                                              |      | 0,10               |                 |                 |      |               |      |
| M8 / M10/       | 16x85  | 85                                              | 1.4  |                    | 0.01            | 0.42            | 1,7  | 0,90          | 1,35 |
| IG-M6           | 16x130 | 130                                             | 1,4  |                    | 0,21            | 0,43            |      |               |      |
| M12/M16/        | 20x85  | 85                                              |      |                    |                 |                 |      |               |      |
| IG-M8 /         | 20x130 | 130                                             | 1,3  |                    | 0,19            | 0,39            |      |               |      |
| IG-M10          | 20x200 | 200                                             |      |                    |                 |                 |      |               |      |
|                 |        |                                                 |      |                    |                 |                 |      |               |      |

| ESSVE Injection system | ONE, ONE ICE for masonry |
|------------------------|--------------------------|
|------------------------|--------------------------|

# Performances calcium solid brick KS-NF

Characteristic values of resistance under tension and shear load (continue) Displacements



| Brick type: Calcium si<br>Table C18: Descriptio                            | licate hollo          | w brick KS L-3DF<br>ĸ |                   |                                                                |                     |                    |     |
|----------------------------------------------------------------------------|-----------------------|-----------------------|-------------------|----------------------------------------------------------------|---------------------|--------------------|-----|
| Brick type                                                                 |                       | Calcium silicate ho   | llow brick        | <b>K</b>                                                       |                     |                    |     |
| Dulla daga itu                                                             | FL                    | KSL-3DF               |                   |                                                                |                     |                    |     |
| Bulk density                                                               | $\rho [kg/dm^2]$      | 1,4                   |                   |                                                                |                     |                    |     |
| Compressive strength f                                                     | <sub>b</sub> ≥ [N/mm] | 8, 12 Or 14           |                   |                                                                |                     |                    |     |
| Code                                                                       |                       | EN 771-2              |                   |                                                                |                     | $\mathbf{\nabla}$  |     |
| Producer (country code)                                                    |                       | e.g. Wemding (DE)     | )                 |                                                                |                     |                    |     |
| Brick dimensions                                                           | լՠՠֈ                  | 240 x 175 x 113       |                   |                                                                |                     |                    |     |
| Drilling method                                                            |                       | Rotary                |                   |                                                                |                     |                    |     |
|                                                                            | 175                   |                       | 95<br>95<br>38 14 | 14<br>44<br>14<br>32<br>14<br>44<br>14<br>44<br>14<br>44<br>14 |                     |                    |     |
| Table C19: Installation                                                    | n parameters          |                       |                   |                                                                |                     |                    |     |
| Anchor size                                                                |                       |                       | [-]               |                                                                | All sizes           | 1)                 |     |
| Edge distance                                                              | C <sub>cr</sub>       |                       | [mm]              |                                                                | 100 (120)           | ,                  |     |
| Minimum edge distance                                                      | Cmin                  |                       |                   |                                                                | 240                 |                    |     |
| Spacing                                                                    | Scr,II                |                       | [mm]              |                                                                | 120                 |                    |     |
| Minimum spacing                                                            | Scr,⊥<br>Smin         |                       | [mm]              |                                                                | 120                 |                    |     |
| <sup>1)</sup> Value in brackets for SH                                     | 120x85; SH20x         | 130 and SH20x200      | []                |                                                                |                     |                    |     |
| Table C20: Group fact                                                      | tor for ancho         | r group in case of t  | ension l          | oading                                                         |                     |                    |     |
| Configuration                                                              |                       | with c ≥              |                   | with s ≥                                                       |                     |                    |     |
| II: anchors placed                                                         |                       | 60                    |                   | 120                                                            |                     |                    | 1,5 |
| parallel to horizontal                                                     | ••                    | C                     |                   | 240                                                            | α <sub>a.N.II</sub> |                    | 20  |
| joint 🗦                                                                    |                       | 160                   |                   | 120                                                            |                     | [_]                | 20  |
| ⊥: anchors placed                                                          |                       | 60                    |                   | 120                                                            |                     | [ [ <sup>*</sup> ] | 1.0 |
| perpendicular to<br>horizontal joint                                       |                       | C <sub>cr</sub>       |                   | 120                                                            | α <sub>g,N,⊥</sub>  |                    | 2,0 |
| ESSVE Injection system<br>Performances calcium<br>Description of the brick | em ONE, ONE           | EICE for masonry      |                   |                                                                | An                  | nex C 9            |     |



| Brick typ                                             | be: Calci          | um silicate ł             | nollow bri     | ck KS L-3                 | DF                        |                             |                  |                      |         |                                       |
|-------------------------------------------------------|--------------------|---------------------------|----------------|---------------------------|---------------------------|-----------------------------|------------------|----------------------|---------|---------------------------------------|
| Table C2 <sup>-</sup>                                 | l: Grou            | p factor for a            | nchor grou     | up in case o              | of shear loa              | ading paral                 | lel to free      | edge                 |         |                                       |
|                                                       | Configur           | ation                     |                | with c ≥                  |                           | with s                      | 2                |                      |         |                                       |
| II: anchor                                            | s placed           |                           | Γ              | 60                        |                           | 120                         |                  |                      |         | 1,0                                   |
| parallel to                                           | horizontal         | V ••                      |                | 160                       |                           | 120                         |                  | α <sub>g,V,II</sub>  |         | 1,6                                   |
| joi                                                   | nt                 |                           |                | Ccr                       |                           | 240                         |                  |                      | r-1     | 2,0                                   |
| ⊥: ancho                                              | s placed           |                           |                | 60                        |                           | 120                         |                  |                      |         | 1,0                                   |
| perpend                                               | icular to          | V                         |                | Cor                       |                           | 120                         |                  | $\alpha_{g,V,\perp}$ |         | 20                                    |
| 101201                                                |                    | ← <u> </u>                | L              | UCI                       |                           | 120                         |                  |                      |         | 2,0                                   |
| Table C2                                              | 2: Grou            | p factor for a            | nchor grou     | up in case (              | of shear loa              | ading perpe                 | endicular        | to free              | edge    |                                       |
|                                                       | Configur           | ation                     |                | with c ≥                  |                           | with s a                    | 2                |                      |         |                                       |
| II: anchoi<br>parallel to                             | s placed           |                           |                | 60                        |                           | 120                         |                  | 0-11                 |         | 1,0                                   |
| joi                                                   | nt                 |                           |                | C <sub>cr</sub>           |                           | 240                         |                  | αg,v,li              | []      | 2,0                                   |
| ⊥: anchor                                             | s placed           |                           |                | 60                        |                           | 120                         |                  |                      |         | 1,0                                   |
| horizon                                               | tal joint          |                           |                | C <sub>cr</sub>           |                           | 120                         |                  | α <sub>g,V,⊥</sub>   |         | 2,0                                   |
|                                                       |                    |                           |                |                           |                           |                             | laada            |                      |         | <b>I</b>                              |
| Table C2.                                             | s: Char            | acteristic val            | ues of res     | istance und               | der tension               | and snear                   | loads            |                      |         |                                       |
|                                                       |                    |                           |                |                           | Char                      | acteristic re               | sistance         |                      |         |                                       |
|                                                       |                    | Effective                 |                |                           |                           | Use calego                  | лу               |                      |         | d/d·w/d·                              |
| Amelaan                                               |                    | anchorage                 |                | d/d                       |                           |                             | w/d; w/v         | N                    |         | w/w                                   |
| Anchor<br>size                                        | Sleeve             | depth                     |                |                           |                           |                             |                  |                      |         | For all                               |
|                                                       |                    |                           | 40°C/24°C      | 80°C/50°C                 | 120°C/72°C                | 40°C/24°C                   | 80°C/50°(        | C   120°             | C/72°C  | temperature                           |
|                                                       |                    | h <sub>ef</sub>           |                | $N_{Rk,b} = N_{Rk,p}$     | 1)                        |                             | $N_{Rk,b} = N_R$ | 1)<br>k.p            |         | V <sub>Rk,b</sub> <sup>4)</sup>       |
|                                                       |                    | [mm]                      |                |                           |                           | [kN]                        |                  |                      |         |                                       |
|                                                       |                    |                           | Comp           | pressive str              | rength f <sub>b</sub> ≥ 8 | B N/mm <sup>2</sup>         |                  |                      |         |                                       |
| M8                                                    | 12x80              | 80                        | 1,5            | 1,5                       | 1,2                       | 1,5                         | 1,2              | (                    | ),9     | $2,5^{2}$ $(0,9)^{3}$                 |
| M8 / M10                                              | 16x85              | 85                        | 1,5            | 1,5                       | 1,2                       | 1,5                         | 1,5              |                      | 1,2     | $4,0^{2}$ (1,5) <sup>3</sup>          |
| / IG-M6                                               | 16x130             | 130                       | 1,5            | 1,5                       | 1,2                       | 1,5                         | 1,5              |                      | 1,2     | $4,0^{2}(1,5)^{3}$                    |
| M12 /                                                 | 20x85              | 85                        | 4,5            | 4,0                       | 3,0                       | 4,5                         | 4,0              | 3                    | 3,0     | 4,0 <sup>2)</sup> (1,5) <sup>3)</sup> |
| IG-M8 /                                               | 20x130             | 130                       | 4,5            | 4,0                       | 3,0                       | 4,5                         | 4,0              | 3                    | 3,0     | 4,0 <sup>2)</sup> (1,5) <sup>3)</sup> |
| IG-M10                                                | 20x200             | 200                       | 4,5            | 4,0                       | 3,0                       | 4,5                         | 4,0              | 3                    | 3,0     | 4,0 <sup>2)</sup> (1,5) <sup>3)</sup> |
|                                                       |                    |                           | Comp           | ressive str               | ength f <sub>b</sub> ≥ 1  | 2 N/mm <sup>2</sup>         |                  |                      |         |                                       |
| M8                                                    | 12x80              | 80                        | 2,0            | 2,0                       | 1,5                       | 2,0                         | 1,5              | -                    | 1,2     | $3,0^{2}(1,2)^{3}$                    |
| M8 / M10                                              | 16x85              | 85                        | 2,0            | 2,0                       | 1,5                       | 2,0                         | 2,0              |                      | 1,5     | $4,5^{2}$ $(1,5)^{3}$                 |
| / IG-M6                                               | 16x130             | 130                       | 2,5            | 2,5                       | 1,5                       | 2,5                         | 2,5              |                      | 1,5     | $4,5^{2}$ $(1,5)^{3}$                 |
| M12 /                                                 | 20x85              | 85                        | 6,0            | 5,5                       | 4,0                       | 6,0                         | 5,5              | 4                    | 4,0     | 4,5 <sup>2)</sup> (1,5) <sup>3)</sup> |
| M16 /                                                 | 20x130             | 130                       | 6,0            | 5,5                       | 4,0                       | 6,0                         | 5,5              | 4                    | 4,0     | 4,5 <sup>2)</sup> (1,5) <sup>3)</sup> |
| IG-M10                                                | 20x200             | 200                       | 6,0            | 5,5                       | 4,0                       | 6,0                         | 5,5              | 4                    | 4,0     | 4,5 <sup>2)</sup> (1,5) <sup>3)</sup> |
| <sup>1)</sup> Values                                  | are valid f        | or $c_{cr}$ and $c_{min}$ |                |                           |                           |                             |                  |                      |         |                                       |
| <sup>2)</sup> V <sub>Rk,c,II</sub><br><sup>3)</sup> V | $= V_{Rk,b}$ valic | for shear load            | parallel to fr | ee edge<br>oor lood in di | raction to from           | odao                        |                  |                      |         |                                       |
| <sup>4)</sup> The va                                  | lues are va        | lid for steel 5.6         | or greater. F  | For steel 4.6             | and 4.8 multip            | oly V <sub>Rk,b</sub> by 0, | 8                |                      |         |                                       |
| FGGVE                                                 | Injection          |                           |                | for macon                 | v                         |                             |                  |                      |         |                                       |
| LOOVE                                                 | injection          | system ONE,               |                |                           | у                         |                             | _                | A                    |         | 0                                     |
| Perform                                               | ances ca           | Icium hollow              | brick KS I     | 3DF                       |                           |                             |                  | Ani                  | nex C 1 | U                                     |
| Installatio                                           | on paramete        | ers (continue)            | undor topolo   | n and choor !             | ood                       |                             |                  |                      |         |                                       |
| Unaracte                                              | insue values       | s or resistance t         | inder tensio   | n and shear I             | oau                       |                             |                  |                      |         |                                       |



| Brick typ                                                                                                                          | e: Calci                                                                                     | um silio                                                                              | cate h                                                            | ollow bri                                     | ck K                          | S L-3I                       | DF                            |                                       |                       |               |                                       |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|-------------------------------|------------------------------|-------------------------------|---------------------------------------|-----------------------|---------------|---------------------------------------|
| Table C2                                                                                                                           | 4: Cha                                                                                       | racterist                                                                             | tic val                                                           | ues of res                                    | istan                         | ce und                       | ler tensio                    | n and shear                           | loads (con            | tinue)        |                                       |
|                                                                                                                                    |                                                                                              |                                                                                       |                                                                   |                                               |                               |                              | Cha                           | racteristic re                        | sistance              |               |                                       |
|                                                                                                                                    |                                                                                              |                                                                                       |                                                                   |                                               |                               |                              |                               | Use categ                             | ory                   |               |                                       |
| Anabar                                                                                                                             |                                                                                              | Effec<br>ancho                                                                        | tive<br>rage                                                      |                                               | c                             | d/d                          |                               |                                       | w/d<br>w/w            |               | d/d; w/d;<br>w/w                      |
| size                                                                                                                               | Sleeve                                                                                       | dep                                                                                   | th                                                                | 40°C/24°C                                     | 80°C                          | c/50°C                       | 120°C/72°(                    | 40°C/24°C                             | 80°C/50°C             | 120°C/72°C    | For all<br>temperature<br>range       |
|                                                                                                                                    |                                                                                              | h <sub>et</sub>                                                                       | f                                                                 |                                               | N <sub>Rk,b</sub> =           | = N <sub>Rk,p</sub>          | 1)                            |                                       | $N_{Rk,b} = N_{Rk,p}$ | 1)<br>D       | V <sub>Rk,b</sub> <sup>4)</sup>       |
|                                                                                                                                    |                                                                                              | [mn                                                                                   | n]                                                                |                                               |                               |                              |                               | [kN]                                  |                       |               |                                       |
|                                                                                                                                    |                                                                                              |                                                                                       |                                                                   | Comp                                          | ressi                         | ve stre                      | ength f <sub>b</sub> ≥        | 14 N/mm <sup>2</sup>                  |                       |               |                                       |
| M8                                                                                                                                 | 12x80                                                                                        | 80                                                                                    | )                                                                 | 2,5                                           | 2                             | 2,5                          | 1,5                           | 2,0                                   | 2,0                   | 1,5           | $3,5^{2}(1,5)^{3}$                    |
| M8 / M10                                                                                                                           | 16x85                                                                                        | 85                                                                                    | ;                                                                 | 2,5                                           | 2                             | 2,5                          | 1,5                           | 2,5                                   | 2,5                   | 1,5           | $6,0^{2}(2,0)^{3}$                    |
| / IG-M6                                                                                                                            | 16x130                                                                                       | 130                                                                                   | 0                                                                 | 2,5                                           | 2                             | 2,5                          | 2,0                           | 2,5                                   | 2,5                   | 2,0           | $6,0^{2}$ (2,0) <sup>3)</sup>         |
| M12 /                                                                                                                              | 20x85                                                                                        | 85                                                                                    | 5                                                                 | 6,5                                           | 6                             | 5,0                          | 4,5                           | 6,5                                   | 6,0                   | 4,5           | $6,0^{2}$ (2,0) <sup>3)</sup>         |
| IG-M8 /                                                                                                                            | 20x130                                                                                       | 130                                                                                   | 0                                                                 | 6,5                                           | 6                             | 5,0                          | 4,5                           | 6,5                                   | 6,0                   | 4,5           | $6,0^{2}$ (2,0) <sup>3)</sup>         |
| IG-M10                                                                                                                             | 20x200                                                                                       | 200                                                                                   | 0                                                                 | 6,5                                           | 6                             | 5,0                          | 4,5                           | 6,5                                   | 6,0                   | 4,5           | 6,0 <sup>2)</sup> (2,0) <sup>3)</sup> |
| 1)         Values           2)         V <sub>Rk,c,I</sub> 3)         V <sub>Rk,c,⊥</sub> 4)         The values           Table C2 | s are valid f<br>= $V_{Rk,b}$ valid<br>= $V_{Rk,b}$ (valid<br>alues are va<br>5: <b>Disp</b> | for c <sub>cr</sub> and<br>d for shea<br>ues in bra<br>alid for ste<br><b>blaceme</b> | l c <sub>min</sub><br>ar load<br>ackets)<br>eel 5.6<br><b>nts</b> | parallel to fr<br>valid for sh<br>or greater. | ree edg<br>ear loa<br>For ste | ge<br>ad in dir<br>eel 4.6 a | ection to fre<br>and 4.8 mult | e edge<br>iply V <sub>Rk,b</sub> by 0 | ,8                    |               |                                       |
| Anchor siz                                                                                                                         | ze Sle                                                                                       | eeve                                                                                  | Effe<br>anch<br>dep                                               | ective<br>horage<br>oth h <sub>ef</sub>       | N                             | δ <sub>N</sub> /             | Ν δ <sub>Ν</sub>              | <sub>0</sub> δ <sub>N</sub> 。         | . V                   | $\delta_{V0}$ | δ <sub>V∞</sub>                       |
|                                                                                                                                    |                                                                                              |                                                                                       | 1]                                                                | mm]                                           | [kN]                          | [mm/l                        | kN] [mi                       | n] [mn                                | n] [kN]               | [mm]          | [mm]                                  |
| M8                                                                                                                                 | 12                                                                                           | 2x80                                                                                  |                                                                   | 80                                            |                               |                              |                               |                                       | 1,0                   | 1,0           | 1,50                                  |
| M8 / M10                                                                                                                           | / 16                                                                                         | 6x85                                                                                  |                                                                   | 85                                            | 0,71                          |                              | 0,6                           | 4 1,2                                 | 9                     |               |                                       |
| IG-M6                                                                                                                              | 16                                                                                           | x130                                                                                  | 1                                                                 | 130                                           |                               | 0.0                          | <u> </u>                      |                                       |                       |               |                                       |
| M12 / M16                                                                                                                          | a / 20                                                                                       | )x85                                                                                  |                                                                   | 85                                            |                               | 0,9                          |                               |                                       | 1,7                   | 1,9           | 2,85                                  |
| IG-M8 /                                                                                                                            | 20                                                                                           | x130                                                                                  | -                                                                 | 130                                           | 1.86                          |                              | 1.6                           | 7 3.3                                 | 4                     | -             |                                       |

#### ESSVE Injection system ONE, ONE ICE for masonry

#### **Performances calcium hollow brick KS L-3DF** Characteristic values of resistance under tension and shear load (continue) Displacements

200

Annex C 11

IG-M10

20x200



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Calaium ailiaata ha                                                                  | llow briek                                                |                                                     |                                                                                                                           |                      |                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|
| Brick type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | KSL-12DF                                                                             | NOW DRICK                                                 |                                                     |                                                                                                                           |                      |                          |
| Bulk density p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [kg/dm <sup>3</sup> ] | 1,4                                                                                  |                                                           |                                                     |                                                                                                                           |                      |                          |
| Compressive strength $f_b \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [N/mm <sup>2</sup> ]  | 10, 12 or 16                                                                         |                                                           |                                                     | 66                                                                                                                        | - 0                  |                          |
| Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | EN 771-2                                                                             |                                                           |                                                     |                                                                                                                           |                      | 1                        |
| Producer (country code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | e.g. Wemding (DE)                                                                    |                                                           |                                                     |                                                                                                                           |                      |                          |
| Brick dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [mm]                  | 498 x 175 x 238                                                                      |                                                           |                                                     |                                                                                                                           |                      |                          |
| Drilling method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Rotary                                                                               |                                                           |                                                     |                                                                                                                           |                      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                      |                                                           |                                                     |                                                                                                                           | 59<br>23<br>59<br>17 |                          |
| 35 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64                    | 59 64                                                                                | 59                                                        | 64                                                  | 59 <sub>7</sub> 35                                                                                                        | 5                    |                          |
| 35       59         Table C27:       Installation particular particu | 64<br>arameters       | 59 <u>64</u>                                                                         | [-]<br>[mm]                                               | 64                                                  | 59 35<br>All sizes<br>100 (120) <sup>1</sup>                                                                              |                      |                          |
| 35       59         Table C27:       Installation particular         Anchor size       Edge distance         Edge distance       Minimum edge distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64<br>arameters       | 59 <u>64</u>                                                                         | [-]<br>[mm]<br>[mm]                                       | 64                                                  | 59 35<br>All sizes<br>100 (120) <sup>1</sup><br>100 (120) <sup>1</sup>                                                    |                      |                          |
| 35       59         Table C27:       Installation particular         Anchor size       Edge distance         Edge distance       Minimum edge distance         Spacing       Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64<br>arameters       | 59 64                                                                                | [-]<br>[mm]<br>[mm]<br>[mm]                               | 64                                                  | 59 35<br>All sizes<br>100 (120) <sup>1</sup><br>100 (120) <sup>1</sup><br>498<br>238                                      |                      |                          |
| 35       59         Table C27:       Installation particular         Anchor size       Edge distance         Edge distance       Minimum edge distance         Spacing       Minimum spacing         1)       Value is breakets for OLION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64<br>arameters       | 59 64                                                                                | [-]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]               | 64 /                                                | 59 35<br>All sizes<br>100 (120) <sup>1</sup><br>100 (120) <sup>1</sup><br>498<br>238<br>120                               |                      |                          |
| 35       59         Table C27:       Installation parallel to horizontal         Anchor size         Edge distance         Minimum edge distance         Spacing <sup>1)</sup> Value in brackets for SH202 <sup>2)</sup> For V <sub>Rk,c</sub> : cmin according to Table C28:         Group factor         Configuration         II: anchors placed         parallel to horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64<br>arameters       | 59 64<br>59 64<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50           | [-]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ension loa | 64 /<br>nding<br>with s ≥<br>120                    | 59 35<br>All sizes<br>100 (120) <sup>1</sup><br>100 (120) <sup>1</sup><br>498<br>238<br>120                               |                      | 1,0                      |
| 35       59         Table C27:       Installation parallel to horizontal joint         Anchor size         Edge distance         Minimum edge distance         Spacing <sup>11</sup> Value in brackets for SH200 <sup>22</sup> For V <sub>Rk,c</sub> : cmin according to Table C28:         Group factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                    | 59 64<br>59 64<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5      | [-]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]               | 64 /<br>Inding<br>with s ≥<br>120<br>498            | 59     35       All sizes       100 (120) <sup>1</sup> 100 (120) <sup>1</sup> 498       238       120                     |                      | 1,0                      |
| 35       59         Table C27:       Installation parallelition parallelition         Anchor size         Edge distance         Minimum edge distance         Spacing         Minimum spacing         1)       Value in brackets for SH202         2)       For V <sub>Rk,c</sub> : cmin according to Table C28:         Group factor         II: anchors placed parallel to horizontal joint         L: anchors placed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64                    | 59 64<br>59 64<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | [-]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ension loa | 64<br>ding<br>with s ≥<br>120<br>498<br>120         | <b>59</b> 35<br>All sizes<br>100 (120) <sup>1</sup><br>100 (120) <sup>1</sup><br>498<br>238<br>120<br>α <sub>g,N,II</sub> |                      | 1,0                      |
| 35       59         Table C27:       Installation parallel to horizontal joint         Anchor size         Edge distance         Minimum edge distance         Spacing         Minimum spacing         1)       Value in brackets for SH202         2)       For V <sub>Rk,c</sub> : cmin according to a state of the sta                                                                                                                                                                                              | 64                    | 59 64<br>59 64<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | [-]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ension loa | 64<br>iding<br>with s ≥<br>120<br>498<br>120<br>238 | 59     35       All sizes       100 (120) <sup>1</sup> 100 (120) <sup>1</sup> 498       238       120                     |                      | 1,0<br>2,0<br>1,0<br>2,0 |



| Brick type                                                                         | : Calcium si                                                        | licate hollo                                             | w brick                      | KS L-120                               | )F                             |                                               |                     |                     |        |                                   |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|------------------------------|----------------------------------------|--------------------------------|-----------------------------------------------|---------------------|---------------------|--------|-----------------------------------|
| Table C29:                                                                         | Group fact                                                          | or for anch                                              | or group i                   | in case of                             | shear load                     | ling paralle                                  | el to free          | edge                |        |                                   |
|                                                                                    | Configuration                                                       |                                                          |                              | with c ≥                               |                                | with s ≥                                      |                     |                     |        |                                   |
| II: anchors<br>parallel to ho<br>joint                                             | placed<br>prizontal                                                 | V •                                                      |                              | Ccr                                    |                                | 498                                           |                     | αg,γ,II             |        | 2,0                               |
| ⊥: anchors<br>perpendicu<br>horizontal                                             | placed<br>Ilar to<br>joint                                          | V                                                        |                              | C <sub>cr</sub>                        |                                | 238                                           |                     | $lpha_{g,V,\perp}$  | [-]    | 2,0                               |
| Table C30:                                                                         | Group fact                                                          | or for anch                                              | or group i                   | in case of                             | shear load                     | ling perpe                                    | ndicular            | to free             | edge   |                                   |
|                                                                                    | Configuration                                                       |                                                          |                              | with c ≥                               |                                | with s ≥                                      |                     |                     |        |                                   |
| II: anchors<br>parallel to ho<br>joint                                             | placed<br>prizontal                                                 | V                                                        |                              | C <sub>cr</sub>                        |                                | 498                                           |                     | α <sub>g,V,II</sub> |        | 2,0                               |
| ⊥: anchors<br>perpendicu<br>horizontal                                             | placed<br>Ilar to<br>joint                                          |                                                          |                              | c <sub>cr</sub> 238 α <sub>g,v,⊥</sub> |                                |                                               | 2,0                 |                     |        |                                   |
| Table C31:       Characteristic values of resistance under tension and shear loads |                                                                     |                                                          |                              |                                        |                                |                                               |                     |                     |        |                                   |
|                                                                                    |                                                                     |                                                          |                              |                                        | Chai                           | racteristic r                                 | esistance           |                     |        |                                   |
|                                                                                    |                                                                     |                                                          |                              |                                        |                                | Use categ                                     | gory                |                     |        |                                   |
| Apphor oizo                                                                        | or size Sleeve depth                                                |                                                          | d/d                          |                                        |                                |                                               | w/d<br>w/w          |                     |        | d/d<br>w/d<br>w/w                 |
| Anchor Size                                                                        |                                                                     |                                                          | 40°C/24°C                    | 80°C/50°C                              | 120°C/72°C                     | 40°C/24°C                                     | 80°C/50°C           | C 120°C             | /72°C  | For all<br>temperature<br>range   |
|                                                                                    |                                                                     | h <sub>ef</sub>                                          | 1                            | $N_{Rk,b} = N_{Rk,b}$                  | 1)<br>p                        | ١                                             | $J_{Rk,b} = N_{Rl}$ | 1)<br>k,p           |        | V <sub>Rk,b</sub> <sup>2)3)</sup> |
|                                                                                    |                                                                     | [mm]                                                     |                              |                                        |                                | [kN]                                          |                     |                     |        |                                   |
|                                                                                    |                                                                     |                                                          | Compres                      | sive stren                             | gth f <sub>b</sub> ≥ 10        | N/mm <sup>2</sup>                             |                     | _                   |        |                                   |
| M8                                                                                 | 12x80                                                               | 80                                                       | 0,6                          | 0,6                                    | 0,4                            | 0,5                                           | 0,5                 | 0,                  | 4      | 2,5                               |
| M8 / M10 /                                                                         | 16x85                                                               | 85                                                       | 0,6                          | 0,6                                    | 0,4                            | 0,6                                           | 0,6                 | 0,                  | 4      | 5,5                               |
| IG-M6                                                                              | 16x130                                                              | 130                                                      | 2,5                          | 2,5                                    | 2,0                            | 2,5                                           | 2,5                 | 2,                  | 0      | 5,5                               |
| M12/M16/                                                                           | 20x85                                                               | 85                                                       | 1,5                          | 1,5                                    | 0,9                            | 1,5                                           | 1,5                 | 0,                  | 9      | 5,5                               |
| IG-M87<br>IG-M10                                                                   | 20x130                                                              | 130                                                      | 2,5                          | 2,5                                    | 2,0                            | 2,5                                           | 2,5                 | 2,                  | 0      | 5,5                               |
|                                                                                    |                                                                     |                                                          | Compres                      | sive stren                             | gth f <sub>b</sub> ≥ 12        | N/mm <sup>2</sup>                             |                     |                     |        |                                   |
| M8                                                                                 | 12x80                                                               | 80                                                       | 0,75                         | 0,6                                    | 0,5                            | 0,6                                           | 0,6                 | 0,                  | 4      | 3,0                               |
| M8 / M10 /                                                                         | 16x85                                                               | 85                                                       | 0,75                         | 0,6                                    | 0,5                            | 0,75                                          | 0,6                 | 0,                  | 5      | 6,5                               |
| IG-M6                                                                              | 16x130                                                              | 130                                                      | 3,0                          | 3,0                                    | 2,0                            | 3,0                                           | 3,0                 | 2,                  | 0      | 6,5                               |
| M12 / M16 /                                                                        | 20x85                                                               | 85                                                       | 1,5                          | 1,5                                    | 1,2                            | 1,5                                           | 1,5                 | 1,                  | 2      | 6,5                               |
| IG-M8 /<br>IG-M10                                                                  | 20x130                                                              | 130                                                      | 3,0                          | 3,0                                    | 2,0                            | 3,0                                           | 3,0                 | 2,                  | 0      | 6,5                               |
| <ol> <li>Values a</li> <li>Calculati</li> <li>The valu</li> </ol>                  | re valid for $c_{cr}$ a<br>on of $V_{Rk,c}$ see<br>es are valid for | and c <sub>min</sub><br>Technical Rep<br>steel 5.6 or gi | oort TR 054<br>reater. For s | , except for<br>steel 4.6 and          | shear load p<br>d 4.8 multiply | parallel to fre<br>y V <sub>Rk,b</sub> by 0,8 | e edge wit<br>3     | th c ≥ 12           | 20 mm: | $V_{Rk,c,II} = V_{Rk,b}$          |
| ESSVE In                                                                           | jection syste                                                       | m ONE, ON                                                | E ICE for                    | masonry                                |                                |                                               |                     |                     |        |                                   |
| Performation                                                                       | nces calcium<br>parameters (co<br>tic values of res                 | hollow bric<br>ntinue)<br>sistance unde                  | <b>k KS L-1</b>              | 2 <b>DF</b><br>nd shear loa            | d                              |                                               |                     | Anı                 | nex C  | 13                                |



| Brick type: Calcium silicate hollow brick KS L-12DF |           |                                 |                                         |            |                         |                   |                   |                                   |                                 |  |  |
|-----------------------------------------------------|-----------|---------------------------------|-----------------------------------------|------------|-------------------------|-------------------|-------------------|-----------------------------------|---------------------------------|--|--|
| Table C32:                                          | Character | istic values                    | of resista                              | ance unde  | r tension a             | nd shear I        | loads (cor        | ntinue)                           |                                 |  |  |
|                                                     |           |                                 | Characteristic resistance               |            |                         |                   |                   |                                   |                                 |  |  |
|                                                     |           |                                 |                                         |            |                         | Use cateo         | gory              |                                   |                                 |  |  |
| Apphoriza                                           | Sleeve    | Effective<br>anchorage<br>depth | d/d                                     |            |                         |                   | d/d<br>w/d<br>w/w |                                   |                                 |  |  |
| Anchor size                                         |           |                                 | 40°C/24°C                               | 80°C/50°C  | 120°C/72°C              | 40°C/24°C         | 80°C/50°C         | 120°C/72°C                        | For all<br>temperature<br>range |  |  |
|                                                     |           | h <sub>ef</sub>                 | $N_{\text{Bk,b}} = N_{\text{Bk,p}}^{1}$ |            |                         | 1                 | 1)<br>p           | V <sub>Rk.b</sub> <sup>2)3)</sup> |                                 |  |  |
|                                                     |           | [mm]                            |                                         |            |                         | [kN]              |                   |                                   |                                 |  |  |
|                                                     |           |                                 | Compres                                 | sive stren | gth f <sub>⊳</sub> ≥ 16 | N/mm <sup>2</sup> |                   |                                   |                                 |  |  |
| M8                                                  | 12x80     | 80                              | 0,9                                     | 0,9        | 0,6                     | 0,75              | 0,75              | 0,5                               | 3,5                             |  |  |
| M8 / M10 /                                          | 16x85     | 85                              | 0,9                                     | 0,9        | 0,6                     | 0,9               | 0,9               | 0,6                               | 8,0                             |  |  |
| IG-M6                                               | 16x130    | 130                             | 4,0                                     | 3,5        | 2,5                     | 4,0               | 3,5               | 2,5                               | 8,0                             |  |  |
| M12 / M16 /                                         | 20x85     | 85                              | 2,0                                     | 2,0        | 1,5                     | 2,0               | 2,0               | 1,5                               | 8,0                             |  |  |
| IG-M8 /<br>IG-M10                                   | 20x130    | 130                             | 4,0                                     | 3,5        | 2,5                     | 4,0               | 3,5               | 2,5                               | 8,0                             |  |  |

<sup>1)</sup> Values are valid for c<sub>cr</sub> and c<sub>min</sub>

<sup>2)</sup> Calculation of V<sub>Rk,c</sub> see Technical Report TR 054, except for shear load parallel to free edge with  $c \ge 120 \text{ mm}$ : V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub> <sup>3)</sup> The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8

# Table C33:Displacements

| Anchor<br>size      | Sleeve | Effective<br>anchorage depth<br>h <sub>ef</sub> | Ν    | δ <sub>N</sub> / N | δ <sub>N0</sub> | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δγ∞  |
|---------------------|--------|-------------------------------------------------|------|--------------------|-----------------|-----------------|------|---------------|------|
|                     |        | [mm]                                            | [kN] | [mm/kN]            | [mm]            | [mm]            | [kN] | [mm]          | [mm] |
| M8                  | 12x80  | 80                                              | 0.26 |                    | 0.02            | 0.46            | 1,0  | 1,3           | 1,95 |
| M8 / M10 /          | 16x85  | 85                                              | 0,20 |                    | 0,23            | 0,40            |      |               |      |
| IG-M6               | 16x130 | 130                                             | 1,14 | 0.90               | 1,03            | 2,06            |      |               |      |
| M12 / M16           | 20x85  | 85                                              | 0,57 |                    | 0,51            | 1,03            | 2,3  | 2,5           | 3,75 |
| / IG-M8 /<br>IG-M10 | 20x130 | 130                                             | 1,14 |                    | 1,03            | 2,06            |      |               |      |

#### ESSVE Injection system ONE, ONE ICE for masonry

**Performances calcium hollow brick KS L-12DF** Characteristic values of resistance under tension and shear load (continue) Displacements



| Brick type: Clay solid brick Mz-DF          |                                       |  |  |  |  |  |  |  |  |
|---------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|--|
| Table C34:         Description of the brick | Table C34:   Description of the brick |  |  |  |  |  |  |  |  |
| Brick type                                  | Clay solid brick<br>Mz-DF             |  |  |  |  |  |  |  |  |
| Bulk density $\rho$ [kg/dm <sup>3</sup> ]   | 1,6                                   |  |  |  |  |  |  |  |  |
| Compressive strength $f_b \ge [N/mm^2]$     | 10, 20 or 28                          |  |  |  |  |  |  |  |  |
| Code                                        | EN 771-1                              |  |  |  |  |  |  |  |  |
| Producer (country code)                     | e.g. Unipor (DE)                      |  |  |  |  |  |  |  |  |
| Brick dimensions [mm]                       | 240 x 115 x 55                        |  |  |  |  |  |  |  |  |
| Drilling method                             | Hammer                                |  |  |  |  |  |  |  |  |
|                                             | · · · ·                               |  |  |  |  |  |  |  |  |
| Table C35: Installation parameter           |                                       |  |  |  |  |  |  |  |  |

|                  | [-]                                                                        | All sizes                                                                                                                         |
|------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| C <sub>cr</sub>  | [mm]                                                                       | 1,5*h <sub>ef</sub>                                                                                                               |
| C <sub>min</sub> | [mm]                                                                       | 60                                                                                                                                |
| Scr              | [mm]                                                                       | 3*h <sub>ef</sub>                                                                                                                 |
| S <sub>min</sub> | [mm]                                                                       | 120                                                                                                                               |
|                  | C <sub>cr</sub><br>C <sub>min</sub><br>S <sub>cr</sub><br>S <sub>min</sub> | [-]           C <sub>cr</sub> [mm]           C <sub>min</sub> [mm]           S <sub>cr</sub> [mm]           S <sub>min</sub> [mm] |

# Table C36: Group factor for anchor group in case of tension loading

| Configuration                   |  | with c ≥ | with s ≥          |                     |     |     |
|---------------------------------|--|----------|-------------------|---------------------|-----|-----|
| II: anchors placed              |  | 60       | 120               |                     |     | 0,7 |
| parallel to horizontal<br>joint |  | 1,5*hef  | 3*h <sub>ef</sub> | α <sub>g,N,II</sub> |     | 2,0 |
| L: anchors placed               |  | 60       | 120               | α <sub>g,N,⊥</sub>  | [-] | 0,5 |
| perpendicular to                |  | 1,5*hef  | 120               |                     |     | 1,0 |
| horizontal joint                |  | 1,5*hef  | 3*h <sub>ef</sub> |                     |     | 2,0 |

#### Table C37: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                    | ation | with c ≥ | with s ≥          |                      |     |     |
|----------------------------------------------|-------|----------|-------------------|----------------------|-----|-----|
| II: anchors placed<br>parallel to horizontal |       | 60       | 120               |                      |     | 0,5 |
|                                              |       | 90       | 120               | $\alpha_{g,V,II}$    |     | 1,1 |
| joint                                        |       | 1,5*hef  | 3*h <sub>ef</sub> |                      | [-] | 2,0 |
| ⊥: anchors placed<br>perpendicular to        |       | 60       | 120               |                      |     | 0,5 |
|                                              |       | 1,5*hef  | 120               | $\alpha_{g,V,\perp}$ |     | 1,0 |
| horizontal joint                             |       | 1,5*hef  | 3*h <sub>ef</sub> |                      |     | 2,0 |

# Table C38: Group factor for anchor group in case of shear loading perpendicular to free edge

| Configuration                                |  | with c ≥ | with s ≥          |                      |       |     |
|----------------------------------------------|--|----------|-------------------|----------------------|-------|-----|
| II: anchors placed<br>parallel to horizontal |  | 60       | 120               |                      |       | 0,5 |
|                                              |  | 1,5*hef  | 120               | α <sub>g,V,II</sub>  | - [-] | 1,0 |
| joint                                        |  | 1,5*hef  | 3*h <sub>ef</sub> |                      |       | 2,0 |
| ⊥: anchors placed<br>perpendicular to        |  | 60       | 120               |                      |       | 0,5 |
|                                              |  | 1,5*hef  | 120               | $\alpha_{g,V,\perp}$ |       | 1,0 |
| horizontal joint                             |  | 1,5*hef  | 3*h <sub>ef</sub> |                      |       | 2,0 |

# ESSVE Injection system ONE, ONE ICE for masonry

#### Performances clay solid brick Mz-DF

Description of the brick

Installation parameters



| Brick type: Clay solid brick Mz-DF |                                                            |                   |                             |                             |            |                        |  |  |  |  |  |  |
|------------------------------------|------------------------------------------------------------|-------------------|-----------------------------|-----------------------------|------------|------------------------|--|--|--|--|--|--|
| Table C39: 0                       | Characteristic values                                      | s of resistance u | nder tension a              | and shear loa               | ds         |                        |  |  |  |  |  |  |
|                                    |                                                            |                   | Characteristic resistance   |                             |            |                        |  |  |  |  |  |  |
|                                    |                                                            |                   |                             |                             |            |                        |  |  |  |  |  |  |
|                                    |                                                            | Effective         |                             | d/d                         |            | d/d                    |  |  |  |  |  |  |
|                                    |                                                            | anchorage         |                             | w/d                         |            |                        |  |  |  |  |  |  |
| Anchor size                        | Sleeve                                                     | depth             |                             | W/W                         |            | W/W                    |  |  |  |  |  |  |
|                                    |                                                            |                   | 40°C/24°C                   | 80°C/50°C                   | 12000/7200 | For all                |  |  |  |  |  |  |
|                                    |                                                            |                   | 40 0/24 0                   | 00 0/00 0                   | 120 0/12 0 | range                  |  |  |  |  |  |  |
|                                    |                                                            | h <sub>ef</sub>   |                             | $N_{Pk, b} = N_{Pk, b}^{1}$ | )          | $V_{\text{Pk}}^{2)3)}$ |  |  |  |  |  |  |
|                                    |                                                            | [mm]              |                             |                             | [kN]       | - nk,0                 |  |  |  |  |  |  |
|                                    | Compressive strength f <sub>b</sub> ≥ 10 N/mm <sup>2</sup> |                   |                             |                             |            |                        |  |  |  |  |  |  |
| M8                                 | -                                                          | 80                | 3,5 (1,5)                   | 3,5 (1,5)                   | 2,5 (1,2)  | 3,5 (1,2)              |  |  |  |  |  |  |
| M10 / IG-M6                        | -                                                          | 90                | 3,5 (1,5)                   | 3,5 (1,5)                   | 3,0 (1,5)  | 3,5 (1,2)              |  |  |  |  |  |  |
| M12 / IG-M8                        | -                                                          | 100               | 4,0 (2,0)                   | 4,0 (2,0)                   | 3,5 (1,5)  | 3,5 (1,2)              |  |  |  |  |  |  |
| M16 / IG-M10                       | -                                                          | 100               | 4,0 (2,0)                   | 4,0 (2,0)                   | 3,5 (1,5)  | 5,5 (1,5)              |  |  |  |  |  |  |
| M8                                 | 12x80                                                      | 80                | 3,5 (1,5)                   | 3,5 (1,5)                   | 3,0 (1,2)  | 3,5 (1,2)              |  |  |  |  |  |  |
| M8 / M10 /                         | 16x85                                                      | 85                | 3,5 (1,5)                   | 3,5 (1,5)                   | 3,0 (1,5)  | 3,5 (1,2)              |  |  |  |  |  |  |
| IG-M6                              | 16x130                                                     | 130               | 3,5 (1,5)                   | 3,5 (1,5)                   | 3,0 (1,5)  | 3,5 (1,2)              |  |  |  |  |  |  |
| M12 / M16 /                        | 20x85                                                      | 85                | 3,5 (1,5)                   | 3,5 (1,5)                   | 3,0 (1,5)  | 3,5 (1,2)              |  |  |  |  |  |  |
| IG-M8 /                            | 20x130                                                     | 130               | 3,5 (1,5)                   | 3,5 (1,5)                   | 3,0 (1,5)  | 3,5 (1,2)              |  |  |  |  |  |  |
| IG-M10                             | 20x200                                                     | 200               | 3,5 (1,5)                   | 3,5 (1,5)                   | 3,0 (1,5)  | 3,5 (1,2)              |  |  |  |  |  |  |
|                                    |                                                            | Compressive s     | trength f <sub>b</sub> ≥ 20 | N/mm <sup>2</sup>           |            |                        |  |  |  |  |  |  |
| M8                                 | -                                                          | 80                | 4,5 (2,5)                   | 4,5 (2,5)                   | 4,0 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
| M10 / IG-M6                        | -                                                          | 90                | 5,5 (2,5)                   | 5,5 (2,5)                   | 4,5 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
| M12 / IG-M8                        | -                                                          | 100               | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 5,0 (1,5)              |  |  |  |  |  |  |
| M16 / IG-M10                       | -                                                          | 100               | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 8,0 (2,5)              |  |  |  |  |  |  |
| M8                                 | 12x80                                                      | 80                | 4,5 (2,5)                   | 4,5 (2,5)                   | 4,0 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
| M8 / M10 /                         | 16x85                                                      | 85                | 5,0 (2,5)                   | 5,0 (2,5)                   | 4,0 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
| IG-M6                              | 16x130                                                     | 130               | 5,0 (2,5)                   | 5,0 (2,5)                   | 4,0 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
| M12 / M16 /                        | 20x85                                                      | 85                | 5,0 (2,5)                   | 5,0 (2,5)                   | 4,0 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
| IG-M8 /                            | 20x130                                                     | 130               | 5,0 (2,5)                   | 5,0 (2,5)                   | 4,0 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
| IG-M10                             | 20x200                                                     | 200               | 5,0 (2,5)                   | 5,0 (2,5)                   | 4,0 (2,0)  | 5,0 (1,5)              |  |  |  |  |  |  |
|                                    |                                                            | Compressive s     | trength f <sub>b</sub> ≥ 28 | N/mm²                       |            |                        |  |  |  |  |  |  |
| M8                                 | -                                                          | 80                | 5,5 (2,5)                   | 5,5 (2,5)                   | 4,5 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |
| M10 / IG-M6                        | -                                                          | 90                | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |
| M12 / IG-M8                        | •                                                          | 100               | 7,0 (3,5)                   | 7,0 (3,5)                   | 6,0 (3,0)  | 5,5 (2,0)              |  |  |  |  |  |  |
| M16 / IG-M10                       | -                                                          | 100               | 7,0 (3,5)                   | 7,0 (3,5)                   | 6,0 (3,0)  | 9,0 (3,0)              |  |  |  |  |  |  |
| M8                                 | 12x80                                                      | 80                | 5,5 (2,5)                   | 5,5 (2,5)                   | 4,5 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |
| M8 / M10 /                         | 16x85                                                      | 85                | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |
| IG-M6                              | 16x130                                                     | 130               | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |
| M12 / M16 /                        | 20x85                                                      | 85                | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |
| IG-M8 /                            | 20x130                                                     | 130               | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |
| IG-M10                             | 20x200                                                     | 200               | 6,0 (3,0)                   | 6,0 (3,0)                   | 5,0 (2,5)  | 5,5 (2,0)              |  |  |  |  |  |  |

<sup>1)</sup> Values are valid for c<sub>cr</sub>, values in brackets are valid for single anchors with c<sub>min</sub>

For  $c_{cr}$  calculation of  $V_{Rk,c}$  see Technical Report TR 054; for  $c_{min}$  values in brackets  $V_{Rk,b} = V_{Rk,c}$ 

<sup>3)</sup> The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0.8

#### ESSVE Injection system ONE, ONE ICE for masonry

### Performances clay solid brick Mz-DF

Characteristic values of resistance under tension and shear load



| Brick type: Clay solid brick Mz-DF |        |                                                 |      |                    |                 |                 |      |               |      |  |
|------------------------------------|--------|-------------------------------------------------|------|--------------------|-----------------|-----------------|------|---------------|------|--|
| Table C40:   Displacements         |        |                                                 |      |                    |                 |                 |      |               |      |  |
| Anchor size                        | Sleeve | Effective<br>anchorage<br>depth h <sub>ef</sub> | N    | δ <sub>N</sub> / N | δ <sub>N0</sub> | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δγ∞  |  |
|                                    |        | [mm]                                            | [kN] | [mm/kN]            | [mm]            | [mm]            | [kN] | [mm]          | [mm] |  |
| M8                                 | -      | 80                                              | 1,3  |                    | 0,19            | 0,39            |      |               |      |  |
| M10 / IG-M6                        | -      | 90                                              | 1,6  | 6                  | 0,24            | 0,47            | 1,9  | -             | 1.50 |  |
| M12 / IG-M8                        | -      | 100                                             | 17   |                    | 0,26            | 0.51            |      |               |      |  |
| M16 / IG-M10                       | -      | 100                                             | 1,7  |                    |                 | 0,51            | 2,9  |               |      |  |
| M8                                 | 12x80  | 80                                              |      | 0.15               |                 |                 |      | 1.00          |      |  |
| M8 / M10 /                         | 16x85  | 85                                              |      | 0,15               |                 |                 |      | 1,00          | 1,50 |  |
| IG-M6                              | 16x130 | 130                                             | 10   |                    | 0.10            | 0.20            | 1.0  |               |      |  |
| M12 / M16 /                        | 20x85  | 85                                              | 1,3  |                    | 0,19            | 0,39            | 1,9  |               |      |  |
| IG-M8 /                            | 20x130 | 130                                             |      |                    |                 |                 |      |               |      |  |
| IG-M10                             | 20x200 | 200                                             |      |                    |                 |                 |      |               |      |  |

# ESSVE Injection system ONE, ONE ICE for masonry

Performances clay solid brick Mz-DF Displacements



| Brick type: Clay hollow                                                                                                                                   | brick HLz                                                     | -16-DF                                                   |         |          |                              |                |     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------|----------|------------------------------|----------------|-----|--|
| Table C41: Description                                                                                                                                    | of the bric                                                   | k                                                        |         |          |                              |                |     |  |
| Brick type                                                                                                                                                |                                                               | Clay hollow brick                                        |         |          |                              |                |     |  |
| Bulk density                                                                                                                                              | [kg/dm <sup>3</sup> ]                                         | 0,8                                                      |         |          |                              | and the second |     |  |
| Compressive strength $f_b \ge$                                                                                                                            | [N/mm <sup>2</sup> ]                                          | 6, 8, 12, 14                                             |         |          |                              |                | 100 |  |
| Code                                                                                                                                                      |                                                               | EN 771-1                                                 |         |          |                              |                | Ĭ   |  |
| Producer (country code)                                                                                                                                   |                                                               | e.g. Unipor DE)                                          |         |          |                              |                |     |  |
| Brick dimensions                                                                                                                                          | [mm]                                                          | 497 x 240 x 238                                          |         |          |                              |                |     |  |
| Drilling method                                                                                                                                           |                                                               | Rotary                                                   |         |          |                              |                |     |  |
| Table C42: Installation                                                                                                                                   |                                                               |                                                          |         |          | +<br>13<br>+<br>13<br>+<br>0 |                |     |  |
| Anchor size                                                                                                                                               | arameters                                                     |                                                          | [_]     |          | All sizes                    |                |     |  |
| Edge distance                                                                                                                                             | Cor                                                           |                                                          | [mm]    |          | 100 (120) <sup>1</sup>       | 1)             |     |  |
| Minimum edge distance                                                                                                                                     | C <sub>min</sub> <sup>2)</sup>                                |                                                          | [mm]    |          | 100 (120)                    | 1)             |     |  |
| Casaiaa                                                                                                                                                   | S <sub>cr,II</sub>                                            |                                                          | [mm]    |          | 497                          |                |     |  |
| Spacing                                                                                                                                                   | S <sub>cr,⊥</sub>                                             |                                                          | [mm]    |          | 238                          |                |     |  |
| Minimum spacing                                                                                                                                           | S <sub>min</sub>                                              |                                                          | [mm]    |          | 100                          |                |     |  |
| <ul> <li>Value in brackets for SH20</li> <li><sup>2)</sup> For V<sub>Rk,c</sub>: c<sub>min</sub> according to</li> <li>Table C43: Group factor</li> </ul> | 0x85; SH20x <sup>:</sup><br>Technical R<br>• <b>for ancho</b> | 130 and SH20x200<br>eport TR 054<br>r group in case of t | tension | loading  |                              | 1              | 1   |  |
|                                                                                                                                                           |                                                               | WITH C 2                                                 |         | with s ≥ |                              |                |     |  |
| parallel to horizontal                                                                                                                                    | ••                                                            | Ccr                                                      |         | 100      | α <sub>0.N.II</sub>          |                | 1,3 |  |
| joint                                                                                                                                                     |                                                               | C <sub>cr</sub>                                          |         | 497      |                              | [-]            | 2,0 |  |
| ⊥: anchors placed                                                                                                                                         | •                                                             | Ccr                                                      |         | 100      |                              |                | 1,1 |  |
| horizontal joint                                                                                                                                          | •                                                             | Ccr                                                      |         | 238      | $\alpha_{g,N,\perp}$         |                | 2,0 |  |
| ESSVE Injection system                                                                                                                                    | ONE, ONE                                                      | ICE for masonry                                          |         |          | Anı                          | nex C 18       |     |  |
| Description of the brick<br>Installation parameters                                                                                                       |                                                               |                                                          |         |          |                              |                |     |  |



| Brick type: Cl                                                                                      | ay hollow brick HL                                                                                                        | z-16-DF                                     |                                     |                                               |                       |         |                            |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------|---------|----------------------------|--|--|--|
| Table C44: G                                                                                        | iroup factor for anch                                                                                                     | or group in case                            | of shear load                       | ding parallel t                               | o free edge           |         |                            |  |  |  |
| Cor                                                                                                 | figuration                                                                                                                | with c ≥                                    | :                                   | with s ≥                                      |                       |         |                            |  |  |  |
| II: anchors place<br>parallel to horizon<br>joint                                                   | ed<br>Intal                                                                                                               | Ccr                                         |                                     | 497                                           | α <sub>g,V,II</sub>   |         | 2,0                        |  |  |  |
| ⊥: anchors place<br>perpendicular t<br>horizontal join                                              | ed<br>o<br>t                                                                                                              | C <sub>cr</sub>                             |                                     | 238                                           | $\alpha_{g,V,\perp}$  | [-]     | 2,0                        |  |  |  |
| Table C45: G                                                                                        | roup factor for anch                                                                                                      | or group in case                            | of shear load                       | ding perpend                                  | icular to free e      | dge     |                            |  |  |  |
| Con                                                                                                 | figuration                                                                                                                | with c ≥                                    | :                                   | with s ≥                                      |                       |         |                            |  |  |  |
| II: anchors place<br>parallel to horizor<br>joint                                                   | ed<br>Intal                                                                                                               | C <sub>cr</sub>                             |                                     | 497                                           | α <sub>g,V,II</sub>   | [_]     | 2,0                        |  |  |  |
| ⊥: anchors place<br>perpendicular t<br>horizontal join                                              | ed<br>o<br>t                                                                                                              | Ccr                                         | 238                                 |                                               | $\alpha_{g,V,\perp}$  | [-]     | 2,0                        |  |  |  |
| Table C46:         Characteristic values of resistance under tension and shear loads                |                                                                                                                           |                                             |                                     |                                               |                       |         |                            |  |  |  |
|                                                                                                     |                                                                                                                           |                                             |                                     | Characte                                      | ristic resistance     | )       |                            |  |  |  |
|                                                                                                     |                                                                                                                           |                                             |                                     | Use                                           | e category            |         |                            |  |  |  |
|                                                                                                     |                                                                                                                           | Effective                                   |                                     | d/d                                           |                       | d/d     |                            |  |  |  |
| Anchor size                                                                                         |                                                                                                                           | anchorage                                   |                                     | w/d                                           |                       |         | w/d                        |  |  |  |
|                                                                                                     | Sleeve                                                                                                                    | depth                                       |                                     | w/w                                           |                       |         | W/W                        |  |  |  |
|                                                                                                     |                                                                                                                           |                                             | 40°C/24°C                           | 80°C/50°C                                     | 120°C/72°C            | tem     | or all<br>perature<br>ange |  |  |  |
|                                                                                                     |                                                                                                                           | h <sub>ef</sub>                             |                                     | $N_{Bkb} = N_{Bkp}$                           | )                     | V       | 2)3)<br>Bk b               |  |  |  |
|                                                                                                     |                                                                                                                           | [mm]                                        |                                     | [kN]                                          |                       |         | 111,0                      |  |  |  |
|                                                                                                     |                                                                                                                           | Compressive s                               | trength $f_b \ge 6$                 | N/mm <sup>2</sup>                             |                       |         |                            |  |  |  |
| M8                                                                                                  | 12x80                                                                                                                     | 80                                          | 2,5                                 | 2,5                                           | 2,0                   |         | 2,5                        |  |  |  |
| M8 / M10/                                                                                           | 16x85                                                                                                                     | 85                                          | 2,5                                 | 2,5                                           | 2,0                   |         | 4,5                        |  |  |  |
| IG-M6                                                                                               | 16x130                                                                                                                    | 130                                         | 3,5                                 | 3,5                                           | 3,0                   |         | 4,5                        |  |  |  |
| M12/M16/                                                                                            | 20x85                                                                                                                     | 85                                          | 2,5                                 | 2,5                                           | 2,0                   |         | 5,0                        |  |  |  |
| IG-M8 / IG-M10                                                                                      | 20x130                                                                                                                    | 130                                         | 3,5                                 | 3,5                                           | 3,0                   |         | 6,0                        |  |  |  |
|                                                                                                     | 20x200                                                                                                                    | 200                                         | 3,5                                 | 3,5                                           | 3,0                   |         | 6,0                        |  |  |  |
|                                                                                                     |                                                                                                                           | Compressive s                               | trength $f_b \ge 8$                 | N/mm <sup>2</sup>                             |                       |         |                            |  |  |  |
| M8                                                                                                  | 12x80                                                                                                                     | 80                                          | 3,0                                 | 3,0                                           | 2,5                   |         | 3,0                        |  |  |  |
| M8 / M10/                                                                                           | 16x85                                                                                                                     | 85                                          | 3,0                                 | 3,0                                           | 2,5                   | -       | 5,5                        |  |  |  |
| IG-M6                                                                                               | 16x130                                                                                                                    | 130                                         | 4,5                                 | 4,5                                           | 3,5                   |         | 5,5                        |  |  |  |
| M12/M16/                                                                                            | 20x85                                                                                                                     | 85                                          | 3,0                                 | 3,0                                           | 2,5                   |         | 6,0                        |  |  |  |
| IG-M8 / IG-M10                                                                                      | 20x130                                                                                                                    | 130                                         | 4,5                                 | 4,5                                           | 3,5                   |         | 7,0                        |  |  |  |
| 1)                                                                                                  | 20x200                                                                                                                    | 200                                         | 4,5                                 | 4,5                                           | 3,5                   |         | 7,0                        |  |  |  |
| <sup>1)</sup> Values ar<br><sup>2)</sup> Calculatio<br>V <sub>Rk,b</sub><br><sup>3)</sup> The value | e valid for c <sub>cr</sub> and c <sub>min</sub><br>on of V <sub>Rk,c</sub> see Technical<br>es are valid for steel 5.6 c | Report TR 054, exc<br>or greater. For steel | cept for shear lo<br>4.6 and 4.8 mu | bad parallel to free litiply $V_{Rk,b}$ by 0, | ee edge with c ≥<br>8 | 125 mm  | V <sub>Rk,c,II</sub> =     |  |  |  |
| ESSVE Inject                                                                                        | ion system ONE, ON                                                                                                        | E ICE for mason                             | iry                                 |                                               |                       |         |                            |  |  |  |
| Performance:<br>Installation para<br>Characteristic v                                               | s clay hollow brick H<br>Imeters (continue)<br>alues of resistance unde                                                   | Lz-16DF<br>r tension and shear              | load                                |                                               | Anne                  | ex C 19 |                            |  |  |  |



| Brick type: Cl     | ay hollow brick HL    | _z-16-DF           |                            |                       |                   |                   |  |  |  |
|--------------------|-----------------------|--------------------|----------------------------|-----------------------|-------------------|-------------------|--|--|--|
| Table C47: 0       | Characteristic values | s of resistance un | der tension a              | and shear loa         | ds (continue)     |                   |  |  |  |
|                    |                       |                    |                            | Characte              | ristic resistance |                   |  |  |  |
|                    |                       | Effective          | Use category               |                       |                   |                   |  |  |  |
|                    |                       |                    |                            | d/d                   |                   |                   |  |  |  |
|                    |                       | anchorage          |                            | w/d                   |                   | w/d               |  |  |  |
| Anchor size Sleeve | Sleeve                | depth              |                            | w/w                   |                   | W/W               |  |  |  |
|                    |                       |                    | 4000/0400                  | 0000/5000             |                   | For all           |  |  |  |
|                    |                       |                    | 40°C/24°C                  | 80°C/50°C             | 120°C/72°C        | temperature       |  |  |  |
|                    |                       |                    |                            |                       |                   |                   |  |  |  |
|                    |                       | n <sub>ef</sub>    |                            | $N_{Rk,b} = N_{Rk,p}$ | ,                 | V <sub>Rk,b</sub> |  |  |  |
|                    |                       | [mm]               |                            | [kN]                  |                   |                   |  |  |  |
|                    |                       | Compressive st     | rength f <sub>b</sub> ≥ 12 | N/mm²                 |                   |                   |  |  |  |
| M8                 | 12x80                 | 80                 | 3,5                        | 3,5                   | 3,0               | 4,0               |  |  |  |
| M8 / M10/          | 16x85                 | 85                 | 3,5                        | 3,5                   | 3,0               | 6,5               |  |  |  |
| IG-M6              | 16x130                | 130                | 5,0                        | 5,0                   | 4,5               | 6,5               |  |  |  |
|                    | 20x85                 | 85                 | 3,5                        | 3,5                   | 3,0               | 7,0               |  |  |  |
| IG-M8 / IG-M10     | 20x130                | 130                | 5,0                        | 5,0                   | 4,5               | 9,0               |  |  |  |
|                    | 20x200                | 200                | 5,0                        | 5,0                   | 4,5               | 9,0               |  |  |  |
|                    |                       | Compressive st     | rength f <sub>b</sub> ≥ 14 | N/mm <sup>2</sup>     |                   |                   |  |  |  |
| M8                 | 12x80                 | 80                 | 4,0                        | 4,0                   | 3,0               | 4,0               |  |  |  |
| M8 / M10/          | 16x85                 | 85                 | 4,0                        | 4,0                   | 3,0               | 6,5               |  |  |  |
| IG-M6              | 16x130                | 130                | 5,5                        | 5,5                   | 4,5               | 6,5               |  |  |  |
| MID/MIC/           | 20x85                 | 85                 | 4,0                        | 4,0                   | 3,0               | 7,0               |  |  |  |
| IG-M8 / IG-M10     | 20x130                | 130                | 5,5                        | 5,5                   | 4,5               | 9,0               |  |  |  |
|                    | 20×200                | 200                | 5,5                        | 5,5                   | 4,5               | 9,0               |  |  |  |

<sup>1)</sup> Values are valid for c<sub>cr</sub> and c<sub>min</sub>

<sup>2)</sup> Calculation of V<sub>Rk,c</sub> see Technical Report TR 054, except for shear load parallel to free edge with  $c \ge 125$  mm: V<sub>Rk,c,II</sub> =  $V_{Rk,b}$ 

<sup>3)</sup> The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8

#### Table C48: Displacements

| Anchor size  | Sleeve | Effective<br>anchorage<br>depth h <sub>ef</sub> | N     | δ <sub>N</sub> / N | δ <sub>N0</sub> | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δ <sub>V∞</sub> |
|--------------|--------|-------------------------------------------------|-------|--------------------|-----------------|-----------------|------|---------------|-----------------|
|              |        | [mm]                                            | [kN]  | [mm/kN]            | [mm]            | [mm]            | [kN] | [mm]          | [mm]            |
| M8           | 12x80  | 80                                              | 1 1 1 |                    | 0.11            | 0.00            | 1,10 | 1,20          | 1,80            |
| M8 / M10/    | 16x85  | 85                                              | 1,14  |                    | 0,11            | 0,23            | 1.96 | 1 50          | 2.25            |
| IG-M6        | 16x130 | 130                                             | 1,57  | 0.10               | 0,16            | 0,31            | 1,00 | 1,50          | 2,25            |
| M12 / M16 /  | 20x85  | 85                                              | 1,14  | 0,10               | 0,11            | 0,23            | 1,86 | 1,50          | 2,25            |
| IG-M8 /      | 20x130 | 130                                             | 1 57  |                    | 0.16            | 0.21            | 2.57 | 2.10          | 0.15            |
| IG-M10 20x20 | 20x200 | 200                                             | 1,57  |                    | 0,16            | 0,31            | 2,37 | 2,10          | 3,15            |

#### ESSVE Injection system ONE, ONE ICE for masonry

#### Performances clay hollow brick HLz-16DF

Characteristic values of resistance under tension and shear load (continue) Displacements



| Brick type: Clay hollow brick F                                                                                                                            | Porotherm Homebrid                        | c                  |          |                     |                     |     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|----------|---------------------|---------------------|-----|--|
| Table C49: Description of the b                                                                                                                            | orick                                     |                    |          |                     |                     |     |  |
| Brick type                                                                                                                                                 | Clay hollow hollow                        | v brick            |          |                     |                     |     |  |
| Bulk density o [kg/dm                                                                                                                                      | Porotnerm Homer                           | Porotherm Homebric |          |                     |                     |     |  |
| Compressive strength $f_{\rm b} \ge [N/mm]$                                                                                                                | $\frac{1}{2}$ 4.6 or 10                   | 4.6 or 10          |          |                     | HHH                 | HH  |  |
| Code                                                                                                                                                       | EN 771-1                                  |                    |          |                     |                     |     |  |
| Producer (country code)                                                                                                                                    | e.g. Wienerberger                         | r (FR)             |          |                     |                     |     |  |
| Brick dimensions [mn                                                                                                                                       | ] 500 x 200 x 299                         | . ,                |          |                     | aleo fræder dæteler |     |  |
| Drilling method                                                                                                                                            | Rotary                                    |                    |          |                     |                     |     |  |
|                                                                                                                                                            |                                           | 494 -              |          |                     |                     |     |  |
| Table C50: Installation paramet                                                                                                                            | ers                                       |                    |          | All -1              |                     |     |  |
| Anchor size                                                                                                                                                |                                           | [-]                |          | All sizes           | 1)                  |     |  |
| $\begin{array}{c} \text{Minimum edge distance} & \text{C}_{\text{min}}^{2)} \end{array}$                                                                   |                                           | [mm]               |          | 100 (120)           | 1)                  |     |  |
| Spacing S <sub>cr,II</sub>                                                                                                                                 |                                           | [mm]               |          | 500                 |                     |     |  |
| Spacing S <sub>cr,⊥</sub>                                                                                                                                  |                                           | [mm]               |          | 299                 |                     |     |  |
| Minimum spacing         Smin           1)         Value in brackets for SH20x85 and           2)         For V <sub>Rk,c</sub> : cmin according to Technic | SH20x130<br>al Report TR 054              | [mm]               |          | 100                 |                     |     |  |
| Table C51: Group factor for and                                                                                                                            | hor group in case of                      | tension le         | oading   | I                   |                     | 1   |  |
| Configuration                                                                                                                                              | with c ≥                                  |                    | with s ≥ |                     |                     |     |  |
| parallel to horizontal                                                                                                                                     | 200                                       |                    | 100      | α <sub>α.N.II</sub> |                     | 2,0 |  |
| joint                                                                                                                                                      | Ccr                                       |                    | 500      |                     | [-]                 | 2,0 |  |
| ⊥: anchors placed                                                                                                                                          | 200                                       |                    | 100      | (i                  |                     | 1,2 |  |
| horizontal joint                                                                                                                                           | Ccr                                       |                    | 299      | Gg,N,⊥              |                     | 2,0 |  |
| ESSVE Injection system ONE, C<br>Performances clay hollow brick                                                                                            | ONE ICE for masonry<br>Porotherm Homebric | 1                  |          | An                  | nex C 21            |     |  |
| Installation parameters                                                                                                                                    |                                           |                    |          |                     |                     |     |  |



| Brick type: Clay sili                                                                                                                                                           | icate hollow                                                                                  | brick Porothe                              | rm Homeb                               | ric                                                           |                       |                      |           |                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------------------------------------------|-----------------------|----------------------|-----------|------------------------|--|
| Table C52: Group f                                                                                                                                                              | actor for ancl                                                                                | nor group in cas                           | se of shear l                          | oading para                                                   | llel to free          | e edge               |           |                        |  |
| Configuratio                                                                                                                                                                    | on                                                                                            | with c                                     | 2 ≥                                    | with s                                                        | ≥                     |                      |           |                        |  |
| II: anchors placed<br>parallel to horizontal<br>joint                                                                                                                           |                                                                                               | C <sub>cr</sub>                            |                                        | 500                                                           |                       | αg,v,II              | [-]       | 2,0                    |  |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint                                                                                                                       |                                                                                               | Ccr                                        | C <sub>or</sub>                        |                                                               | 299                   |                      |           | 2,0                    |  |
| Table C53: Group f                                                                                                                                                              | actor for ancl                                                                                | hor group in cas                           | se of shear l                          | oading perp                                                   | endiculaı             | to free              | edge      |                        |  |
| Configuratio                                                                                                                                                                    | on                                                                                            | with c                                     | 2 ≥                                    | with s                                                        | ≥                     |                      |           |                        |  |
| II: anchors placed<br>parallel to horizontal<br>joint                                                                                                                           |                                                                                               | C <sub>cr</sub>                            | Ccr                                    |                                                               | 500                   |                      | []        | 2,0                    |  |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint                                                                                                                       |                                                                                               | Ccr                                        |                                        | 299                                                           |                       | $\alpha_{g,V,\perp}$ | [-]       | 2,0                    |  |
| Table C54: Charac                                                                                                                                                               | teristic value                                                                                | s of resistance                            | under tensio                           | on and shear                                                  | loads                 |                      |           |                        |  |
|                                                                                                                                                                                 |                                                                                               |                                            |                                        | Chara                                                         | cteristic re          | esistanc             | e         |                        |  |
|                                                                                                                                                                                 |                                                                                               |                                            |                                        | 1                                                             | jory                  |                      |           |                        |  |
|                                                                                                                                                                                 |                                                                                               | Effective                                  |                                        | d/d                                                           |                       |                      | d/d       |                        |  |
|                                                                                                                                                                                 |                                                                                               | anchorage                                  | w/d                                    |                                                               |                       |                      |           | ı/d                    |  |
| Anchor size                                                                                                                                                                     | Sleeve depth                                                                                  | depth                                      | w/w                                    |                                                               |                       |                      |           |                        |  |
|                                                                                                                                                                                 |                                                                                               |                                            | 40°C/24°C 80°C/50°C                    | 120°C/72                                                      | 2°C   ⊢               | For all temperature  |           |                        |  |
|                                                                                                                                                                                 |                                                                                               | b                                          | $N_{\text{DLL}} = N_{\text{DL}}^{(1)}$ |                                                               | )                     | V2                   |           | e<br>()3)              |  |
|                                                                                                                                                                                 |                                                                                               |                                            |                                        | $N_{Rk,b} = N_{Rk,p}$                                         |                       | KN]                  |           | 200-20                 |  |
|                                                                                                                                                                                 |                                                                                               | Compressive                                | strength f.                            | $> 4 \text{ N/mm}^2$                                          |                       |                      |           |                        |  |
| M8                                                                                                                                                                              | 12x80                                                                                         | 80                                         | 0.9                                    | 0.9                                                           | 0.75                  |                      | 20        |                        |  |
|                                                                                                                                                                                 | 16x85                                                                                         | 85                                         | 0.9                                    | 0.9                                                           | 0.75                  |                      | 2.0       |                        |  |
| M8 / M10/ IG-M6                                                                                                                                                                 | 16x130                                                                                        | 130                                        | 1.2                                    | 1.2                                                           | 0.9                   |                      | 2.0       |                        |  |
| M12 / M16 /                                                                                                                                                                     | 20x85                                                                                         | 85                                         | 0,9                                    | 0,9                                                           | 0,75                  |                      | 2,5       |                        |  |
| IG-M8 / IG-M10                                                                                                                                                                  | 20x130                                                                                        | 130                                        | 1,2                                    | 1,2                                                           | 0,9                   |                      | 2,5       |                        |  |
|                                                                                                                                                                                 |                                                                                               | Compressive                                | strength f <sub>b</sub>                | ≥ 6 N/mm <sup>2</sup>                                         |                       |                      | (6)       |                        |  |
| M8                                                                                                                                                                              | 12x80                                                                                         | 80                                         | 0,9                                    | 0,9                                                           | 0,9                   |                      | 2,5       |                        |  |
| M8 / M10/ IG-M6                                                                                                                                                                 | 16x85                                                                                         | 85                                         | 0,9                                    | 0,9                                                           | 0,9                   |                      | 2,5       |                        |  |
|                                                                                                                                                                                 | 16x130                                                                                        | 130                                        | 1,2                                    | 1,2                                                           | 1,2                   |                      | 2,5       |                        |  |
| M12 / M16 /                                                                                                                                                                     | 20x85                                                                                         | 85                                         | 0,9                                    | 0,9                                                           | 0,9                   |                      | 3,0       |                        |  |
| IG-M8 / IG-M10                                                                                                                                                                  | 20x130                                                                                        | 130                                        | 1,2                                    | 1,2                                                           | 1,2                   |                      | 3,0       |                        |  |
| <ul> <li><sup>17</sup> Values are valid f</li> <li><sup>2)</sup> Calculation of V<sub>R</sub></li> <li>V<sub>Rk,b</sub></li> <li><sup>3)</sup> The values are values</li> </ul> | for c <sub>cr</sub> and c <sub>min</sub><br><sub>k,c</sub> see Technica<br>alid for steel 5.6 | Il Report TR 054, e<br>or greater. For ste | except for sheated and 4.8             | ar load parallel<br><sup>1</sup> multiply V <sub>Rk,b</sub> l | to free edg<br>by 0,8 | e with c             | ≥ 200 mm: | V <sub>Rk,c,II</sub> = |  |
| ESSVE Injection sy<br>Performances clay                                                                                                                                         | stem ONE, O                                                                                   | NE ICE for masc<br>Porotherm Hom           | onry<br>ebric                          |                                                               | _                     | An                   | nex C 22  |                        |  |
| Installation parameters<br>Characteristic values o                                                                                                                              | (continue)<br>f resistance und                                                                | er tension and she                         | ar load                                |                                                               |                       |                      |           |                        |  |



|                                                                                                 |                                             |                              |                                                |                               |                            | Chara                                                                     | cteristic resis                                                       | tance       |                                   |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|------------------------------------------------|-------------------------------|----------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|-----------------------------------|--|
|                                                                                                 |                                             |                              |                                                |                               |                            |                                                                           | Use category                                                          |             |                                   |  |
|                                                                                                 |                                             |                              | Effective                                      |                               |                            | d/d                                                                       |                                                                       |             |                                   |  |
| Anabaraina                                                                                      | Cleave                                      | anchorage                    |                                                |                               |                            | W/d                                                                       |                                                                       |             |                                   |  |
| Anchor Size                                                                                     | e   c                                       | sleeve                       | deptil                                         |                               |                            | VV/ VV                                                                    |                                                                       | Eor all tem | v<br>nerature                     |  |
|                                                                                                 |                                             |                              |                                                | 40°C/2                        | 24°C                       | 80°C/50°C                                                                 | 120°C/72°C                                                            | rang        | je                                |  |
|                                                                                                 |                                             |                              | h <sub>ef</sub>                                |                               | N <sub>Rk,b</sub>          |                                                                           | $R_{k,b} = N_{Rk,p}^{(1)}$                                            |             | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |
|                                                                                                 |                                             |                              | [mm]                                           |                               |                            |                                                                           | [kN]                                                                  |             |                                   |  |
|                                                                                                 |                                             |                              | Compress                                       | ive strengtl                  | h f <sub>b</sub> ≥ ′       | <u>10 N/mm²</u>                                                           | 4.0                                                                   |             |                                   |  |
| <u>M8 1</u>                                                                                     |                                             | 12x80                        | 80                                             | 1,2                           | 2                          | 1,2 1,2                                                                   |                                                                       | 3,0         | 3,0                               |  |
| M8 / M10/ IG-                                                                                   | M6 1                                        | 6×120                        | 120                                            | 1,2                           | :                          | 1,2                                                                       | 1,2                                                                   | 3,0         | )<br>:                            |  |
| M12 / M16                                                                                       |                                             | 20x85                        | 85                                             | 1,0                           | ,                          | 1.2                                                                       | 1.0                                                                   | 3,0         | )                                 |  |
| IG-M8 / IG-M                                                                                    | 10 2                                        | 0x130                        | 130                                            | 1.5                           |                            | 1.5                                                                       | 1.5                                                                   | 4.0         | )                                 |  |
| Table C56: D                                                                                    | Sleeve                                      | ents<br>Effect<br>anchor     | ive<br>age N                                   | r steel 4.6 an $\delta_N / N$ | ια 4.8 n<br>δ <sub>N</sub> | nuitipiy v <sub>Rk,b</sub>                                                | ∞ V                                                                   | δνο         | δ <sub>V∞</sub>                   |  |
|                                                                                                 | 0,0010                                      | depth                        | n <sub>ef</sub>                                | [mm/kN]                       | ſmr                        | n] [mr                                                                    | n] [kN]                                                               | [mm]        | [mm]                              |  |
| M8                                                                                              | 12v80                                       | 80                           |                                                |                               | [111                       | n [nn                                                                     |                                                                       | [,,,,,]     | []                                |  |
|                                                                                                 | 16x85                                       | 85                           | 0,34                                           |                               | 0,2                        | 7 0,5                                                                     | 5 0,0                                                                 | -           |                                   |  |
| IG-M6                                                                                           | 16x130                                      | 130                          | 0.43                                           | 0.00                          | 0.3                        | 4 06                                                                      | 9 1.0                                                                 | 1.00        | 1 00                              |  |
| M12 / M16 /                                                                                     | 20x85                                       | 85 0.34                      |                                                | 0,80                          | 0.2                        | 7 0.5                                                                     | 5                                                                     | 1,20        | 1,80                              |  |
| IG-M8 /<br>IG-M10                                                                               | 20x130                                      | 130                          | 0,43                                           |                               | 0,3                        | 4 0,6                                                                     | 9 1,14                                                                |             |                                   |  |
| M8           M8 / M10/           IG-M6           M12 / M16 /           IG-M8 /           IG-M10 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130 | 80<br>85<br>130<br>85<br>130 | 0,34<br>0,34<br>0,34<br>0,34<br>0,34<br>0,0,43 | 0,80                          | 0,2<br>0,3<br>0,2<br>0,3   | 7     0,5       4     0,6       7     0,5       4     0,6       4     0,6 | $ \begin{array}{c} 0,9\\ 0,9\\ 9\\ 1,0\\ 5\\ 9\\ 1,14\\ \end{array} $ | 1,20        |                                   |  |

# ESSVE Injection system ONE, ONE ICE for masonry

#### Performances clay hollow brick Porotherm Homebric Characteristic values of resistance under tension and shear load (continue) Displacements


| Brick type: Clay hollow brick                                                                                                                               | k BG\                                | / Thermo                                               |        |           |                                                                                                                  |                      |     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|--------|-----------|------------------------------------------------------------------------------------------------------------------|----------------------|-----|-----|
| Table C57: Description of th                                                                                                                                | e bricl                              | k                                                      |        |           |                                                                                                                  |                      |     |     |
| Brick type                                                                                                                                                  |                                      | Clay hollow brick                                      |        |           |                                                                                                                  |                      |     |     |
| Bulk density o [kg/c                                                                                                                                        | lm <sup>3</sup> ]                    | 0,6                                                    |        |           |                                                                                                                  |                      |     |     |
| Compressive strength $f_b \ge [N/m]$                                                                                                                        | im <sup>2</sup> ]                    | 4, 6 or 10                                             |        |           |                                                                                                                  |                      |     |     |
| Code                                                                                                                                                        |                                      | EN 771-1                                               |        |           |                                                                                                                  |                      |     |     |
| Producer (country code)                                                                                                                                     |                                      | e.g. Leroux (FR)                                       |        |           |                                                                                                                  |                      |     |     |
| Brick dimensions [r                                                                                                                                         | nm]                                  | 500 x 200 x 314                                        |        |           | and the second |                      |     |     |
| Drilling method                                                                                                                                             |                                      | Rotary                                                 |        |           |                                                                                                                  |                      |     |     |
|                                                                                                                                                             |                                      |                                                        |        |           |                                                                                                                  |                      |     |     |
| 200                                                                                                                                                         |                                      |                                                        |        |           |                                                                                                                  |                      | 5   |     |
| Table C58: Installation parameters                                                                                                                          |                                      |                                                        |        |           |                                                                                                                  |                      |     |     |
| Anchor size                                                                                                                                                 |                                      |                                                        | [-]    |           |                                                                                                                  |                      |     |     |
| Edge distance C <sub>cr</sub>                                                                                                                               | 2)                                   |                                                        | [mm]   |           | $\frac{100 (120)^{1}}{100 (120)^{1}}$                                                                            |                      |     |     |
| Sor Sor                                                                                                                                                     | <u>n</u><br>II                       |                                                        | [mm]   |           | 500                                                                                                              |                      |     |     |
| Spacing Scr.                                                                                                                                                | <u></u>                              |                                                        | [mm]   |           | 314                                                                                                              |                      |     |     |
| Minimum spacing S <sub>mi</sub>                                                                                                                             | n                                    |                                                        | [mm]   |           | 100                                                                                                              |                      |     |     |
| <ol> <li>Value in brackets for SH20x85 a</li> <li>For V<sub>Rk,c</sub>: c<sub>min</sub> according to Tech</li> <li>Table C59: Group factor for a</li> </ol> | nd SH2<br>nical Re<br><b>ancho</b> r | 20x130<br>eport TR 054<br><b>r group in case of te</b> | ensior | n loading |                                                                                                                  |                      |     |     |
| Configuration                                                                                                                                               |                                      | with c ≥                                               |        | with s ≥  |                                                                                                                  |                      |     |     |
| II: anchors placed                                                                                                                                          | Ī                                    | 200                                                    |        | 100       |                                                                                                                  |                      |     | 1,7 |
| parallel to horizontal                                                                                                                                      |                                      | Cor                                                    |        | 500       |                                                                                                                  | $\alpha_{g,N,II}$    |     | 2.0 |
|                                                                                                                                                             |                                      | 200                                                    |        | 100       |                                                                                                                  |                      | [-] | 1 1 |
| perpendicular to<br>horizontal joint                                                                                                                        | 200                                  |                                                        |        | 314       |                                                                                                                  | $\alpha_{g,N,\perp}$ |     | 2,0 |
| ESSVE Injection system ONE                                                                                                                                  | , ONE                                | ICE for masonry                                        |        |           |                                                                                                                  |                      |     |     |
| Performances clay hollow brick BGV Thermo<br>Description of the brick<br>Installation parameters                                                            |                                      |                                                        |        |           | Annex C 24                                                                                                       |                      |     |     |



| Brick type: Clay hollow brick BGV Thermo                                                        |                           |                 |                      |            |     |  |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------|-----------------|----------------------|------------|-----|--|--|--|
| Table C60:         Group factor for anchor group in case of shear loading parallel to free edge |                           |                 |                      |            |     |  |  |  |
| Configuration                                                                                   | with c ≥                  | with s ≥        |                      |            |     |  |  |  |
| II: anchors placed<br>parallel to horizontal<br>joint                                           | C <sub>cr</sub>           | 500             | α <sub>g</sub> ,∨,II | <b>F</b> 1 | 2,0 |  |  |  |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint                                       | C <sub>cr</sub>           | 314             | $\alpha_{g,v,\perp}$ | [-]        | 2,0 |  |  |  |
| Table C61: Group factor for ancho                                                               | or group in case of shear | loading perpend | icular to free       | edge       |     |  |  |  |
| Configuration                                                                                   | with c ≥                  | with s ≥        |                      |            |     |  |  |  |
| II: anchors placed<br>parallel to horizontal<br>joint                                           | C <sub>cr</sub>           | 500             | α <sub>g,V,II</sub>  | ſ_1        | 2,0 |  |  |  |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint                                       | C <sub>cr</sub>           | 314             | $\alpha_{g,V,\perp}$ | [-]        | 2,0 |  |  |  |
| ESSVE Injection system ONE_ONE                                                                  | FICE for masonry          |                 |                      |            |     |  |  |  |
| Performances clay hollow brick BC                                                               |                           | Anı             | 1ex C 25             |            |     |  |  |  |
|                                                                                                 |                           |                 |                      |            |     |  |  |  |



| Brick type:                                                                                                        | Clay hollo                                                        | w brick BGV                                                                   | Therm                    | 0                                 |                                    |                                               |                  |                                |                        |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|-----------------------------------|------------------------------------|-----------------------------------------------|------------------|--------------------------------|------------------------|--|
| Table C62:                                                                                                         | Character                                                         | istic values of                                                               | i resista                | nce under t                       | ension and                         | shear load                                    | ls               |                                |                        |  |
|                                                                                                                    |                                                                   |                                                                               |                          |                                   | Cha                                | aracteristic                                  | resistance       | )                              |                        |  |
|                                                                                                                    |                                                                   |                                                                               |                          |                                   |                                    | Use cate                                      | gory             |                                |                        |  |
|                                                                                                                    |                                                                   | Effectiv                                                                      | e                        |                                   | d/d                                |                                               |                  | d/d                            |                        |  |
|                                                                                                                    |                                                                   | anchora                                                                       | ge                       | w/d                               |                                    |                                               |                  | w/d                            |                        |  |
| Anchor size                                                                                                        | Sleeve                                                            | depth                                                                         |                          |                                   | w/w                                |                                               |                  | w/w                            |                        |  |
|                                                                                                                    |                                                                   |                                                                               |                          | 40°C/24°C                         | 80°C/50°C                          | C 120°C                                       | /72°C            | For all temp<br>range          | erature<br>e           |  |
|                                                                                                                    |                                                                   | h <sub>ef</sub>                                                               |                          |                                   | $N_{Rk,b} = N_{Rk}$                | r,p                                           |                  | V <sub>Rk,b</sub> <sup>2</sup> | (3)                    |  |
|                                                                                                                    |                                                                   | [mm]                                                                          |                          | [kN]                              |                                    |                                               |                  |                                |                        |  |
|                                                                                                                    |                                                                   | C                                                                             | ompres                   | sive streng                       | th f <sub>b</sub> ≥4 N/n           | nm²                                           |                  |                                |                        |  |
| M8                                                                                                                 | 12x80                                                             | 80                                                                            |                          | 0,6                               | 0,6                                | 0,                                            | ,6               | 2,0                            | 2,0                    |  |
| M8 / M10/                                                                                                          | 16x85                                                             | 85                                                                            |                          | 0,6                               | 0,6                                | 0,                                            | ,6               | 2,0                            |                        |  |
| IG-M6                                                                                                              | 16x130                                                            | 130                                                                           |                          | 1,2                               | 1,2                                | 0,                                            | ,9               | 2,5                            |                        |  |
| M12 / M16 /<br>IG-M8 /                                                                                             | 20x85                                                             | 85                                                                            |                          | 0,6 0,6 0,6 2,5                   |                                    |                                               |                  |                                |                        |  |
| IG-M10                                                                                                             | 20x130                                                            | 130                                                                           |                          | 1,2 1,2 0,9 2,5                   |                                    |                                               |                  |                                |                        |  |
| Compressive strength f <sub>b</sub> ≥ 6 N/mm <sup>2</sup>                                                          |                                                                   |                                                                               |                          |                                   |                                    |                                               |                  |                                |                        |  |
| M8                                                                                                                 | 12x80                                                             | 80                                                                            |                          | 0,9                               | 0,9                                | 0,                                            | 75               | 2,5                            |                        |  |
| M8 / M10/                                                                                                          | 16x85                                                             | 85                                                                            |                          | 0,9                               | 0,9                                | 0,                                            | 75               | 2,5                            |                        |  |
| IG-M6                                                                                                              | 16x130                                                            | 130                                                                           |                          | 1,5                               | 1,5                                | 1,                                            | ,2               | 3,0                            |                        |  |
| M12 / M16 /<br>IG-M8 /                                                                                             | 20x85                                                             | 85                                                                            |                          | 0,9                               | 0,9                                | 0,                                            | 75               | 3,0                            |                        |  |
| IG-M10                                                                                                             | 20x130                                                            | 130                                                                           |                          | 1,5                               | 1,5                                | 1,                                            | ,2               | 3,0                            |                        |  |
|                                                                                                                    | Compressive strength f <sub>b</sub> ≥ 10 N/mm <sup>2</sup>        |                                                                               |                          |                                   |                                    |                                               |                  |                                |                        |  |
| M8                                                                                                                 | 12x80                                                             | 80                                                                            |                          | 0,9                               | 0,9                                | 0,                                            | 9                | 3,5                            |                        |  |
| M8 / M10/                                                                                                          | 16x85                                                             | 85                                                                            |                          | 0,9                               | 0,9                                | 0,                                            | 9                | 3,5                            |                        |  |
| IG-M6                                                                                                              | 16x130                                                            | 130                                                                           |                          | 2,0                               | 2,0                                | 1,                                            | ,5               | 4,0                            |                        |  |
| M12 / M16 /<br>IG-M8 /                                                                                             | 20x85                                                             | 85                                                                            |                          | 0,9                               | 0,9                                | 0,                                            | ,9               | 4,0                            |                        |  |
| IG-M10                                                                                                             | 20x130                                                            | 130                                                                           |                          | 2,0                               | 2,0                                | 1,                                            | 5                | 4,0                            |                        |  |
| <ol> <li>Values</li> <li><sup>2)</sup> Calcula</li> <li>V<sub>Rk,b</sub></li> <li><sup>3)</sup> The val</li> </ol> | are valid for d<br>ation of V <sub>Rk,c</sub> s<br>lues are valid | c <sub>cr</sub> and c <sub>min</sub><br>ee Technical Re<br>for steel 5.6 or g | eport TR (<br>greater. F | )54, except fo<br>or steel 4.6 ai | or shear load p<br>nd 4.8 multiply | parallel to fre<br>y V <sub>Rk,b</sub> by 0,8 | e edge with<br>3 | n c ≥ 250 mm:                  | V <sub>Rk,c,II</sub> = |  |
| Table C63:                                                                                                         | Displacem                                                         | nents                                                                         |                          |                                   |                                    |                                               |                  |                                |                        |  |
| Anchor size                                                                                                        | Sleeve                                                            | Effective<br>anchorage<br>depth h <sub>ef</sub>                               | N                        | δ <sub>N</sub> / N                | δ <sub>N0</sub>                    | δ <sub>N∞</sub>                               | v                | δ <sub>vo</sub>                | δγ∞                    |  |
|                                                                                                                    |                                                                   | [mm]                                                                          | [kN]                     | [mm/kN]                           | [mm]                               | [mm]                                          | [kN]             | [mm]                           | [mm]                   |  |
| M8                                                                                                                 | 12x80                                                             | 80                                                                            | 0.00                     |                                   | 0.01                               | 0.44                                          | 07               |                                |                        |  |
| M8 / M10/                                                                                                          | 16x85                                                             | 85                                                                            | 0,26                     |                                   | 0,21                               | 0,41                                          | 0,7              |                                |                        |  |
| IG-M6                                                                                                              | 16x130                                                            | 130                                                                           | 0.43                     | 0.80                              | 0.34                               | 0.69                                          |                  | 1.00                           | 1 50                   |  |
| M12/M16/                                                                                                           | 20x85                                                             | 85                                                                            | 0,26                     | 0,00                              | 0,21                               | 0,41                                          | 0,86             | 1,00                           | 1,50                   |  |
| IG-M8 /<br>IG-M10                                                                                                  | 20x130                                                            | 130                                                                           | 0,43                     |                                   | 0,34                               | 0,69                                          |                  |                                |                        |  |
|                                                                                                                    |                                                                   |                                                                               |                          |                                   |                                    |                                               |                  |                                |                        |  |

ESSVE Injection system ONE, ONE ICE for masonry

Performances clay hollow brick BGV Thermo Characteristic values of resistance under tension and shear load Displacements Annex C 26



| Brick type: Clay hollow b                                                                                                                            | orick Cali                            | bric R+                                               |             |          |                         |        |     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-------------|----------|-------------------------|--------|-----|--|
| Table C64: Description of                                                                                                                            | of the bric                           | k                                                     |             |          |                         |        |     |  |
| Brick type                                                                                                                                           |                                       | Clay hollow brick<br>Calibric R+                      |             |          |                         |        |     |  |
| Bulk density p                                                                                                                                       | [kg/dm <sup>3</sup> ]                 | 0,6                                                   |             |          |                         | Sec.   |     |  |
| Compressive strength $f_b \ge 1$                                                                                                                     | [N/mm <sup>2</sup> ]                  | 6, 9 or 12                                            |             |          |                         |        | 2   |  |
| Code                                                                                                                                                 |                                       | EN 771-1                                              |             |          |                         |        | <   |  |
| Producer (country code)                                                                                                                              |                                       | e.g. Terreal (FR)                                     |             |          |                         |        |     |  |
| Brick dimensions                                                                                                                                     | [mm]                                  | 500 x 200 x 314                                       |             |          |                         |        |     |  |
| Drilling method                                                                                                                                      |                                       | Rotary                                                |             |          |                         |        |     |  |
|                                                                                                                                                      |                                       |                                                       |             |          |                         | 5<br>* |     |  |
| Table C65: Installation pa                                                                                                                           | arameters                             |                                                       |             |          | All -'                  |        |     |  |
| Anchor size                                                                                                                                          | 0                                     |                                                       | [-]<br>[mm] |          | All sizes               | 1)     |     |  |
| Minimum edge distance                                                                                                                                | C <sub>Cr</sub> <sup>2)</sup>         |                                                       | [mm]        |          | 100 (120) <sup>1)</sup> |        |     |  |
|                                                                                                                                                      | S <sub>cr,II</sub>                    |                                                       | [mm]        |          | 500                     |        |     |  |
| Spacing                                                                                                                                              | S <sub>cr,⊥</sub>                     |                                                       | [mm]        |          | 314                     |        |     |  |
| Minimum spacing                                                                                                                                      | S <sub>min</sub>                      | Think Waltable                                        | [mm]        |          | 100                     |        |     |  |
| <sup>1)</sup> Value in brackets for SH20x<br><sup>2)</sup> For V <sub>Rk,c</sub> : c <sub>min</sub> according to T<br><b>Table C66: Group factor</b> | 85 and SH<br>Fechnical R<br>for ancho | 20x130<br>eport TR 054<br><b>r group in case of</b> 1 | tension     | loading  |                         |        |     |  |
| Configuration                                                                                                                                        |                                       | with c ≥                                              |             | with s ≥ |                         |        |     |  |
| II: anchors placed                                                                                                                                   |                                       | 175                                                   |             | 100      |                         |        | 1,7 |  |
| joint                                                                                                                                                |                                       | C <sub>cr</sub>                                       |             | 500      | α <sub>g,N,II</sub>     |        | 2,0 |  |
| ⊥: anchors placed                                                                                                                                    |                                       | 175                                                   |             | 100      |                         | [-]    | 1,0 |  |
| perpendicular to                                                                                                                                     | :                                     | Corr                                                  |             | 314      | α <sub>g,N,⊥</sub>      |        | 20  |  |
| ESSVE Injection system ONE, ONE ICE for masonry Performances clay hollow brick Calibric R+ Annex C 27                                                |                                       |                                                       |             |          |                         |        |     |  |
| Description of the brick<br>Installation parameters                                                                                                  |                                       |                                                       |             |          |                         |        |     |  |



| Brick type: Clay hollow brick Calibric R+                                                            |                                                     |                              |                              |                                   |                         |            |                 |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|------------------------------|-----------------------------------|-------------------------|------------|-----------------|--|--|
| Table C67:                                                                                           | Group factor f                                      | or anchor group in           | case of shear                | loading parallel                  | to free edge            |            |                 |  |  |
| (                                                                                                    | Configuration                                       | W                            | ith c ≥                      | with s ≥                          |                         |            |                 |  |  |
| II: anchors p<br>parallel to hor<br>joint                                                            | laced<br>izontal                                    |                              | C <sub>cr</sub>              | 500                               | α <sub>g,V,II</sub>     |            | 2,0             |  |  |
| ⊥: anchors p<br>perpendicul<br>horizontal j                                                          | laced<br>ar to<br>oint                              |                              | C <sub>cr</sub>              | 314                               | $\alpha_{g,V,\perp}$    | [-]        | 2,0             |  |  |
| Table C68:         Group factor for anchor group in case of shear loading perpendicular to free edge |                                                     |                              |                              |                                   |                         |            |                 |  |  |
| (                                                                                                    | Configuration                                       | w                            | ith c ≥                      | with s ≥                          |                         |            |                 |  |  |
| II: anchors p<br>parallel to hor<br>joint                                                            | hors placed<br>I to horizontal<br>joint             |                              | C <sub>cr</sub>              | 500                               | α <sub>g,V,II</sub>     | [-]        | 2,0             |  |  |
| ⊥: anchors p<br>perpendicul<br>horizontal j                                                          | laced<br>ar to<br>oint                              |                              | C <sub>cr</sub>              | 314                               | $\alpha_{g,v,\perp}$    |            | 2,0             |  |  |
| Table C69:         Characteristic values of resistance under tension and shear loads                 |                                                     |                              |                              |                                   |                         |            |                 |  |  |
|                                                                                                      |                                                     |                              |                              | Character                         | istic resistance        |            |                 |  |  |
|                                                                                                      |                                                     |                              | Use category                 |                                   |                         |            |                 |  |  |
|                                                                                                      |                                                     | Effective                    |                              | d/d                               |                         |            | d/d             |  |  |
|                                                                                                      |                                                     | anchorage                    |                              | W/a                               |                         |            | W/C             |  |  |
| Anchor size                                                                                          | Sleeve                                              | depth                        |                              |                                   |                         | _          | For all         |  |  |
|                                                                                                      |                                                     |                              | 40°C/24°C                    | 80°C/50°C                         | 120°C/72°C              | ter        | nperature       |  |  |
|                                                                                                      | $h_{ef}$ $N_{Rk,p} = N_{Rk,p}^{1}$ $V_{Rk,b}^{2)3}$ |                              |                              |                                   |                         |            |                 |  |  |
|                                                                                                      |                                                     | [mm]                         |                              |                                   | [kN]                    |            |                 |  |  |
|                                                                                                      |                                                     | Compress                     | sive strength f <sub>t</sub> | , ≥ 6 N/mm²                       |                         |            |                 |  |  |
| M8                                                                                                   | 12x80                                               | 80                           | 0,9                          | 0,9                               | 0,75                    |            | 3,0             |  |  |
| M8 / M10/                                                                                            | 16x85                                               | 85                           | 0,9                          | 0,9                               | 0,75                    |            | 4,0             |  |  |
|                                                                                                      | 16x130                                              | 130                          | 1,2                          | 1,2                               | 0,9                     |            | 4,0             |  |  |
| IG-M8 /                                                                                              | 20x85                                               | 65                           | 0,9                          | 0,9                               | 0,75                    |            | 6,0             |  |  |
| IG-M10                                                                                               | 20x130                                              | 130                          | 1,2                          | 1,2                               | 0,9                     |            | 6,0             |  |  |
|                                                                                                      |                                                     | Compress                     | ive strength f <sub>t</sub>  | 2 2 9 N/mm <sup>2</sup>           |                         |            |                 |  |  |
| M8                                                                                                   | 12x80                                               | 80                           | 1,2                          | 1,2                               | 0,9                     |            | 3,5             |  |  |
| M8 / M10/                                                                                            | 16x85                                               | 85                           | 1,2                          | 1,2                               | 0,9                     |            | 5,0             |  |  |
| IG-M6                                                                                                | 16x130                                              | 130                          | 1,5                          | 1,5                               | 1,2                     |            | 5,0             |  |  |
| M12 / M16 /                                                                                          | 20x85                                               | 85                           | 1,2                          | 1,2                               | 0,9                     |            | 7,5             |  |  |
| IG-M87<br>IG-M10                                                                                     | 20x130                                              | 130                          | 1,5                          | 1,5                               | 1,2                     |            | 7,5             |  |  |
| <sup>1)</sup> Values                                                                                 | s are valid for c <sub>cr</sub> ar                  | nd c <sub>min</sub>          | A sussest for she            |                                   |                         |            |                 |  |  |
|                                                                                                      | lation of V <sub>Rk,c</sub> see I                   | ecnnical Report 1R 05        | 4, except for sne            | ar load parallel to f             | ree edge with $c \ge 2$ | 250 mm     | $V_{Rk,c,II} =$ |  |  |
| <sup>3)</sup> The va                                                                                 | alues are valid for s                               | steel 5.6 or greater. For    | steel 4.6 and 4.8            | 3 multiply V <sub>Rk,b</sub> by 0 | ),8                     |            |                 |  |  |
| ESSVE Inj                                                                                            | ection system C                                     | ONE, ONE ICE for m           | asonry                       |                                   |                         |            |                 |  |  |
| Deví                                                                                                 | Destauran alar hallan belah Osthela D               |                              |                              |                                   |                         | Annex C 28 |                 |  |  |
|                                                                                                      | Performances clay hollow brick Calibric R+          |                              |                              |                                   |                         |            |                 |  |  |
| Characterist                                                                                         | ic values of resista                                | ue)<br>nce under tension and | shear load                   |                                   |                         |            |                 |  |  |
| Unaracterist                                                                                         | ic values of resista                                | nee under tension and        | Silear Iuau                  |                                   |                         |            |                 |  |  |



| Brick type: Clay hollow brick Calibric R+                                                                                                                                                                                                                                                                                                    |             |                       |               |                |                             |               |     |                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|---------------|----------------|-----------------------------|---------------|-----|-------------------------|--|
| Table C70:                                                                                                                                                                                                                                                                                                                                   | Characteris | tic values of resista | ance under te | ension and     | l shear loa                 | ds (contin    | ue) |                         |  |
|                                                                                                                                                                                                                                                                                                                                              |             |                       |               |                | Characteris                 | stic resistar | nce |                         |  |
|                                                                                                                                                                                                                                                                                                                                              |             |                       |               |                | Use d                       | category      |     |                         |  |
|                                                                                                                                                                                                                                                                                                                                              |             | Effective             |               |                | d/d                         |               |     | d/d                     |  |
|                                                                                                                                                                                                                                                                                                                                              |             | anchorage             |               |                | w/d                         |               |     | w/d                     |  |
| Anchor size                                                                                                                                                                                                                                                                                                                                  | Sleeve      | depth                 |               |                | W/W                         |               |     | W/W                     |  |
|                                                                                                                                                                                                                                                                                                                                              |             |                       | 40°C/249      |                | C/50°C                      | 12000/70      |     | For all                 |  |
|                                                                                                                                                                                                                                                                                                                                              |             |                       | 40 0/24       |                | 0/00 0                      | 12010/72      |     | range                   |  |
|                                                                                                                                                                                                                                                                                                                                              |             | h <sub>ef</sub>       |               | N <sub>P</sub> | $h = N_{\text{Bk} p}^{(1)}$ |               |     | $V_{\text{Bk}b}^{2)3)}$ |  |
|                                                                                                                                                                                                                                                                                                                                              |             | [mm]                  |               | [kN]           |                             |               |     |                         |  |
| Compressive strength f <sub>b</sub> ≥ 12 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                   |             |                       |               |                |                             |               |     |                         |  |
| M8                                                                                                                                                                                                                                                                                                                                           | 12x80       | 80                    | 1,2           |                | 1,2                         | 0,9           |     | 4,0                     |  |
| M8 / M10/                                                                                                                                                                                                                                                                                                                                    | 16x85       | 85                    | 1,2           |                | 1,2                         | 0,9           |     | 5,5                     |  |
| IG-M6                                                                                                                                                                                                                                                                                                                                        | 16x130      | 130                   | 1,5           |                | 1,5                         | 1,2           |     | 5,5                     |  |
| M12 / M16 /                                                                                                                                                                                                                                                                                                                                  | 20x85       | 85                    | 1,2           |                | 1,2                         | 0,9           |     | 8,5                     |  |
| IG-M8 /<br>IG-M10                                                                                                                                                                                                                                                                                                                            | 20x130      | 130                   | 1,5           |                | 1,5                         | 1,2           |     | 8,5                     |  |
| <sup>1)</sup> Values are valid for $c_{cr}$ and $c_{min}$<br><sup>2)</sup> Calculation of $V_{Rk,c}$ see Technical Report TR 054, except for shear load parallel to free edge with $c \ge 250$ mm: $V_{Rk,c,II} = V_{Rk,b}$<br><sup>3)</sup> The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8 |             |                       |               |                |                             |               |     |                         |  |
| Table C71: Displacements                                                                                                                                                                                                                                                                                                                     |             |                       |               |                |                             |               |     |                         |  |
|                                                                                                                                                                                                                                                                                                                                              |             | Effective             |               |                |                             |               |     |                         |  |

| Anchor size       | Sleeve | Effective<br>anchorage<br>depth h <sub>ef</sub> | Ν    | δ <sub>N</sub> / N | $\delta_{N0}$ | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δ <sub>V∞</sub> |  |
|-------------------|--------|-------------------------------------------------|------|--------------------|---------------|-----------------|------|---------------|-----------------|--|
|                   |        | [mm]                                            | [kN] | [mm/kN]            | [mm]          | [mm]            | [kN] | [mm]          | [mm]            |  |
| M8                | 12x80  | 80                                              | 0.24 |                    | 0.07          | 0 55            | 1,0  | 1,10          | 1,65            |  |
| M8 / M10/         | 16x85  | 85                                              | 0,34 |                    | 0,27          | 0,55            | 0,55 | 1 4 2         |                 |  |
| IG-M6             | 16x130 | 130                                             | 0,43 | 0.80               | 0,34          |                 | 1,43 | 2,00          | 3,00            |  |
| M12 / M16 /       | 20x85  | 85                                              | 0,34 | ŕ                  | 0,27          | 0,55            |      |               |                 |  |
| IG-M8 /<br>IG-M10 | 20x130 | 130                                             | 0,43 |                    | 0,34          | 0,69            | 2,14 |               |                 |  |

| ESSVE Injection system ONE, ONE ICE for masonry                             |            |
|-----------------------------------------------------------------------------|------------|
| Performances clay hollow brick Calibric R+                                  | Annex C 29 |
| Characteristic values of resistance under tension and shear load (continue) |            |
| Displacements                                                               |            |



| Brick type: Clay hollow                                                                                                                     | brick Urb                                 | oanbric                                                  |            |            |                         |          |     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|------------|------------|-------------------------|----------|-----|--|--|
| Table C72: Description                                                                                                                      | of the brid                               | :k                                                       |            |            |                         |          |     |  |  |
| Brick type                                                                                                                                  |                                           | Clay hollow brick                                        |            |            |                         |          |     |  |  |
| Dulle develte                                                                                                                               | <b>[]</b> /                               | Urbanbric                                                |            |            |                         | EFFE     | 10  |  |  |
| Bulk density p                                                                                                                              |                                           | 0,7                                                      |            |            | TEF                     |          |     |  |  |
| Compressive strength $f_b = \frac{1}{2}$                                                                                                    | : [N/mm <sup>-</sup> ]                    | 6, 9 or 12                                               |            |            | 596                     |          |     |  |  |
| Code                                                                                                                                        |                                           | EN 771-1                                                 |            |            | E                       |          |     |  |  |
| Producer (country code)                                                                                                                     |                                           | e.g. Imerys (FR)                                         |            |            |                         |          |     |  |  |
| Brick dimensions                                                                                                                            | [mm]                                      | 560 x 200 x 274                                          |            |            |                         |          |     |  |  |
| Drilling method                                                                                                                             |                                           | Rotary                                                   |            |            |                         |          |     |  |  |
| <u> </u>                                                                                                                                    |                                           | 560                                                      |            |            | 99.5                    | ;        |     |  |  |
|                                                                                                                                             |                                           |                                                          |            | 5          |                         |          |     |  |  |
|                                                                                                                                             | ø40                                       |                                                          | C†         | <b>b,0</b> | 20                      | 00       |     |  |  |
|                                                                                                                                             |                                           |                                                          |            |            |                         | ]        |     |  |  |
|                                                                                                                                             |                                           |                                                          |            |            |                         |          |     |  |  |
|                                                                                                                                             | <b> 6</b> ;                               |                                                          |            |            |                         |          |     |  |  |
|                                                                                                                                             |                                           |                                                          |            | - 40       |                         |          |     |  |  |
| Table C73:         Installation p           Anchor size         Installation p                                                              | parameters                                | 3                                                        | [-]        |            | All sizes               |          |     |  |  |
| Edge distance                                                                                                                               | Ccr                                       |                                                          | [mm]       |            | $100(120)^{1}$          | )        |     |  |  |
| Minimum edge distance                                                                                                                       | C <sub>min</sub> <sup>2)</sup>            |                                                          | [mm]       |            | 100 (120) <sup>1)</sup> |          |     |  |  |
| Speciag                                                                                                                                     | S <sub>cr,II</sub>                        |                                                          | [mm]       |            | 560                     |          |     |  |  |
| Spacing                                                                                                                                     | $\mathbf{S}_{cr,\perp}$                   |                                                          | [mm]       |            | 274                     |          |     |  |  |
| Minimum spacing                                                                                                                             | Smin                                      |                                                          | [mm]       |            | 100                     |          |     |  |  |
| <ul> <li>Value in brackets for SH20</li> <li>For V<sub>Rk,c</sub>: c<sub>min</sub> according to</li> <li>Table C74: Group factor</li> </ul> | )x85 and SH<br>Technical F<br>r for ancho | l20x130<br>Report TR 054<br><b>or group in case of</b> t | tension lo | bading     |                         |          |     |  |  |
| Configuration                                                                                                                               |                                           | with c ≥                                                 |            | with s ≥   |                         |          |     |  |  |
| II: anchors placed                                                                                                                          |                                           | 185                                                      |            | 100        |                         |          | 1,9 |  |  |
| parallel to horizontal                                                                                                                      | ••                                        | Car                                                      |            | 560        | α <sub>g,N,II</sub>     |          | 20  |  |  |
|                                                                                                                                             |                                           | 105                                                      |            | 100        |                         | [-]      | -,0 |  |  |
| perpendicular to                                                                                                                            | •                                         | 185                                                      |            | 100        | α <sub>α.Ν</sub>        |          | 1,1 |  |  |
| horizontal joint                                                                                                                            |                                           | C <sub>cr</sub>                                          |            | 274        | g, , ,⊥                 |          | 2,0 |  |  |
| ESSVE Injection system                                                                                                                      | ONE, ONI                                  | E ICE for masonry                                        |            |            |                         |          |     |  |  |
| Performances clay hollo<br>Description of the brick<br>Installation parameters                                                              | w brick Uı                                | banbric                                                  |            |            | Anr                     | nex C 30 |     |  |  |



| Brick type: Cl                                                                                       | ay hollow brick Ur                                                                                 | banbric                                       |                                     |                                                       |                      |         |                        |  |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------------------------|----------------------|---------|------------------------|--|--|--|
|                                                                                                      |                                                                                                    |                                               |                                     |                                                       |                      |         |                        |  |  |  |
| Table C75: G                                                                                         | iroup factor for anch                                                                              | or group in case                              | of shear load                       | ding parallel to                                      | o free edge          |         |                        |  |  |  |
| Con                                                                                                  | figuration                                                                                         | with c ≥                                      | :                                   | with s ≥                                              |                      |         |                        |  |  |  |
| II: anchors place<br>parallel to horizor<br>joint                                                    | ed<br>ntal                                                                                         | C <sub>cr</sub>                               |                                     | 560                                                   | α <sub>g,V,II</sub>  | [-]     | 2,0                    |  |  |  |
| ⊥: anchors place<br>perpendicular t<br>horizontal joint                                              | ed<br>o<br>t                                                                                       | C <sub>cr</sub>                               |                                     | 274                                                   | $\alpha_{g,V,\perp}$ | [-]     | 2,0                    |  |  |  |
| Table C76:         Group factor for anchor group in case of shear loading perpendicular to free edge |                                                                                                    |                                               |                                     |                                                       |                      |         |                        |  |  |  |
| Con                                                                                                  | figuration                                                                                         | with c ≥                                      | :                                   | with s ≥                                              |                      |         |                        |  |  |  |
| II: anchors place<br>parallel to horizor<br>joint                                                    | ed<br>htal                                                                                         | C <sub>cr</sub>                               |                                     | 560                                                   | α <sub>g,V,II</sub>  | []      | 2,0                    |  |  |  |
| ⊥: anchors place<br>perpendicular t<br>horizontal joint                                              | ed<br>o<br>t                                                                                       | C <sub>cr</sub>                               |                                     | 274                                                   | $\alpha_{g,V,\perp}$ | [-]     | 2,0                    |  |  |  |
| Table C77: 0                                                                                         | Characteristic values                                                                              | s of resistance un                            | der tension a                       | and shear load                                        | ds                   |         |                        |  |  |  |
|                                                                                                      |                                                                                                    |                                               |                                     | Character                                             | istic resistanc      | е       |                        |  |  |  |
|                                                                                                      |                                                                                                    |                                               |                                     | Use                                                   | category             |         |                        |  |  |  |
|                                                                                                      |                                                                                                    | Effective                                     |                                     | d/d                                                   |                      |         | d/d                    |  |  |  |
|                                                                                                      |                                                                                                    | anchorage                                     |                                     | w/d                                                   |                      |         | w/d                    |  |  |  |
| Anchor size                                                                                          | Sleeve                                                                                             | depth                                         |                                     | vv/ vv                                                |                      | F       | or all                 |  |  |  |
|                                                                                                      |                                                                                                    |                                               | 40°C/24°C                           | 80°C/50°C                                             | 120°C/72°C           | tem     | perature               |  |  |  |
|                                                                                                      |                                                                                                    |                                               |                                     |                                                       |                      | r       | ange                   |  |  |  |
|                                                                                                      |                                                                                                    | h <sub>ef</sub>                               |                                     | $N_{Rk,b} = N_{Rk,p}$                                 | )                    | V       | 2)3)<br>Rk,b           |  |  |  |
|                                                                                                      |                                                                                                    | [mm]                                          |                                     | 2                                                     | [kN]                 |         |                        |  |  |  |
|                                                                                                      | 10.00                                                                                              | Compressive st                                | trength $f_b \ge 6$                 | N/mm²                                                 |                      |         |                        |  |  |  |
| M8                                                                                                   | 12x80                                                                                              | 80                                            | 0,9                                 | 0,9                                                   | 0,75                 | _       | 3,0                    |  |  |  |
| M8 / M10/                                                                                            | 16x85                                                                                              | 85                                            | 0,9                                 | 0,9                                                   | 0,75                 |         | 3,0                    |  |  |  |
|                                                                                                      | 16X130                                                                                             | 130                                           | 2,0                                 | 2,0                                                   | 1,5                  |         | 3,0                    |  |  |  |
| M12/M16/                                                                                             | 20x85                                                                                              | 120                                           | 0,9                                 | 0,9                                                   | 0,75                 |         | 3,5                    |  |  |  |
|                                                                                                      | 201130                                                                                             | Compressive st                                | 2,0                                 | 2,0                                                   | 1,5                  |         | 3,5                    |  |  |  |
| M8                                                                                                   | 12x80                                                                                              | 80                                            |                                     | 0.9                                                   | 0.9                  |         | 4.0                    |  |  |  |
| M8 / M10/                                                                                            | 16x85                                                                                              | 85                                            | 0,0                                 | 0,0                                                   | 0,9                  |         | 4.0                    |  |  |  |
| IG-M6                                                                                                | 16x130                                                                                             | 130                                           | 2.5                                 | 2.5                                                   | 2.0                  |         | 4.0                    |  |  |  |
| M12 / M16 /                                                                                          | 20x85                                                                                              | 85                                            | 0.9                                 | 0.9                                                   | 0.9                  |         | 4.5                    |  |  |  |
| IG-M8 / IG-M10                                                                                       | 20x130                                                                                             | 130                                           | 2,5                                 | 2,5                                                   | 2,0                  |         | 4,5                    |  |  |  |
| <ol> <li>Values ar</li> <li>Calculatic</li> <li>V<sub>Rk,b</sub></li> <li>The value</li> </ol>       | e valid for $c_{cr}$ and $c_{min}$<br>on of $V_{Rk,c}$ see Technical<br>as are valid for steel 5.6 | l Report TR 054, exc<br>or greater. For steel | cept for shear lo<br>4.6 and 4.8 mu | ad parallel to fre<br>Itiply V <sub>Rk,b</sub> by 0,8 | e edge with c ≥<br>3 | 190 mm: | V <sub>Rk,c,II</sub> = |  |  |  |
| ESSVE Inject                                                                                         | ion system ONE, ON                                                                                 | IE ICE for mason                              | ry                                  |                                                       |                      |         |                        |  |  |  |
| Performance<br>Installation para<br>Characteristic v                                                 | s clay hollow brick L<br>ameters (continue)<br>alues of resistance unde                            | Jrbanbric<br>er tension and shear             | load                                |                                                       | Ann                  | ex C 31 |                        |  |  |  |



| Brick type:                                                                                | Clay hollow                                                                                     | brick Urban                                                     | bric                   |                                 |                           |                                                      |                   |               |                        |  |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------|---------------------------------|---------------------------|------------------------------------------------------|-------------------|---------------|------------------------|--|--|
| Table C78:                                                                                 | Table C78:         Characteristic values of resistance under tension and shear loads (continue) |                                                                 |                        |                                 |                           |                                                      |                   |               |                        |  |  |
|                                                                                            |                                                                                                 |                                                                 |                        |                                 | Characteristic resistance |                                                      |                   |               |                        |  |  |
|                                                                                            |                                                                                                 |                                                                 |                        |                                 |                           | Use                                                  | e category        |               |                        |  |  |
|                                                                                            |                                                                                                 |                                                                 | Effectiv               | 0                               |                           | d/d                                                  |                   |               | d/d                    |  |  |
|                                                                                            |                                                                                                 | a                                                               | nchora                 | ae                              |                           | w/d                                                  |                   |               | w/d                    |  |  |
| Anchor size                                                                                | Slee                                                                                            | ve                                                              | depth                  |                                 |                           | w/w                                                  |                   |               | w/w                    |  |  |
|                                                                                            |                                                                                                 |                                                                 |                        |                                 |                           |                                                      |                   | F             | or all                 |  |  |
|                                                                                            |                                                                                                 |                                                                 |                        | 40                              | °C/24°C                   | 80°C/50°C                                            | 120°C/72          | 2°C tem       | perature               |  |  |
|                                                                                            |                                                                                                 |                                                                 |                        |                                 |                           |                                                      |                   |               | 2)3)                   |  |  |
|                                                                                            |                                                                                                 |                                                                 | n <sub>ef</sub>        |                                 | $N_{Rk,b} = N_{Rk,p}''$   |                                                      |                   |               | Rk.b                   |  |  |
| [mm] [kN]                                                                                  |                                                                                                 |                                                                 |                        |                                 |                           |                                                      |                   |               |                        |  |  |
| $\frac{1}{10000}$                                                                          |                                                                                                 |                                                                 |                        |                                 |                           |                                                      |                   |               |                        |  |  |
| N8                                                                                         | 12x8                                                                                            | 30                                                              | 80                     |                                 | 1,2                       | 1,2                                                  | 0,9               |               | 4,5                    |  |  |
| M8 / M10/                                                                                  | 16x8                                                                                            | 35                                                              | 85                     |                                 | 1,2                       | 1,2                                                  | 0,9               |               | 4,5                    |  |  |
| IG-M6                                                                                      | 16x1                                                                                            | 30                                                              | 130                    |                                 | 3,0                       | 3,0                                                  | 2,5               |               | 4,5                    |  |  |
| M12 / M16 /                                                                                | 20x8                                                                                            | 35                                                              | 85                     |                                 | 1,2                       | 1,2                                                  | 0,9               |               | 5,0                    |  |  |
| IG-M8 / IG-M1                                                                              | 0 20x1                                                                                          | 30                                                              | 130                    |                                 | 3,0                       | 3,0                                                  | 2,5               |               | 5,0                    |  |  |
| <sup>1)</sup> Values<br><sup>2)</sup> Calcula<br>V <sub>Rk,b</sub><br><sup>3)</sup> The va | are valid for c <sub>cr</sub><br>ation of V <sub>Rk,c</sub> sea<br>lues are valid fo            | and c <sub>min</sub><br>e Technical Repo<br>or steel 5.6 or gre | ort TR 05<br>eater. Fo | 54, except fo<br>or steel 4.6 a | or shear lo               | ad parallel to fre<br>Itiply V <sub>Rk,b</sub> by 0, | ee edge with<br>8 | n c ≥ 190 mm: | V <sub>Rk,c,II</sub> = |  |  |
| Table C79:                                                                                 | Displaceme                                                                                      | nts                                                             | _                      |                                 | _                         |                                                      |                   |               |                        |  |  |
|                                                                                            |                                                                                                 | Effective                                                       |                        |                                 |                           |                                                      |                   |               |                        |  |  |
| Anchor size                                                                                | Sleeve                                                                                          | anchorage                                                       | N                      | δ <sub>N</sub> / N              | δ <sub>N0</sub>           | δ <sub>N∞</sub>                                      | V                 | $\delta_{V0}$ | δ <sub>V∞</sub>        |  |  |
| 7410101 0120                                                                               | 0,00000                                                                                         | depth h <sub>ef</sub>                                           |                        |                                 |                           |                                                      |                   |               |                        |  |  |
|                                                                                            |                                                                                                 | [mm]                                                            | [kN]                   | [mm/kN]                         | [mm]                      | [mm]                                                 | [kN]              | [mm]          | [mm]                   |  |  |
| M8                                                                                         | 12x80                                                                                           | 80                                                              | 0.34                   |                                 | 0.27                      | 0.55                                                 |                   |               |                        |  |  |
| M8 / M10/                                                                                  | 16x85                                                                                           | 85                                                              | 0,04                   |                                 | 0,27                      | 0,00                                                 | 1,30              |               |                        |  |  |

0,69

0,27

0,69

1,37

0,55

1,37

1,43

1,00

1,50

0,86

0,34

0,86

0,80

130

85

130

| ESSVE Injection system ONE, ONE ICE for masonry                             |            |
|-----------------------------------------------------------------------------|------------|
| Performances clay hollow brick Urbanbric                                    | Annex C 32 |
| Characteristic values of resistance under tension and shear load (continue) |            |
| Displacements                                                               |            |

IG-M6

M12 / M16 /

IG-M8 /

IG-M10

16x130

20x85

20x130



| Brick type: Clay hollow brid                                                                                                             | ck Brig                               | ue creuse C40                                           |             |          |   |                      |          |     |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|-------------|----------|---|----------------------|----------|-----|
| Table C80: Description of t                                                                                                              | he bric                               | k                                                       |             |          |   |                      |          |     |
|                                                                                                                                          |                                       | Clay hollow brick                                       |             |          |   |                      |          |     |
| Brick type                                                                                                                               |                                       | Brique creuse C40                                       |             |          |   |                      |          |     |
| Bulk density p [kg/                                                                                                                      | /dm <sup>3</sup> ]                    | 0,7                                                     |             |          |   |                      |          |     |
| Compressive strength $f_b \ge [N/n]$                                                                                                     | mm²]                                  | 4, 8 or 12                                              |             |          |   |                      |          |     |
| Code                                                                                                                                     |                                       | EN 771-1                                                |             |          |   |                      |          |     |
| Producer (country code)                                                                                                                  |                                       | e.g. Terreal (FR)                                       |             |          |   |                      |          |     |
| Brick dimensions                                                                                                                         | [mm]                                  | 500 x 200 x 200                                         |             |          |   |                      |          |     |
| Drilling method                                                                                                                          |                                       | Rotary                                                  |             |          |   |                      |          |     |
|                                                                                                                                          |                                       |                                                         |             |          |   |                      |          |     |
|                                                                                                                                          | 8 1                                   | 200                                                     |             | 6 1      |   |                      |          |     |
|                                                                                                                                          | -                                     | 1                                                       | 8 11        | 6 **     |   |                      |          |     |
| Table C81:       Installation para         Anchor size       Edge distance                                                               | meters                                |                                                         | [-]<br>[mm] | 200      | ) | All sizes            | 1)       |     |
| Minimum edge distance cr                                                                                                                 | 2)<br>min                             |                                                         | [mm]        |          | - | 00 (120)1            | 1)       |     |
| Spacing                                                                                                                                  | or,II                                 |                                                         | [mm]        |          |   | 500                  |          |     |
| Spacing                                                                                                                                  | or,⊥                                  |                                                         | [mm]        |          |   | 200                  |          |     |
| Minimum spacing s <sub>r</sub>                                                                                                           | min                                   |                                                         | [mm]        |          |   | 200                  |          |     |
| Value in brackets for SH20x85<br><sup>2)</sup> For $V_{Rk,c}$ : c <sub>min</sub> according to Tecl<br><b>Table C82:</b> Group factor for | and SH2<br>hnical R<br><b>ancho</b> i | 20x130<br>eport TR 054<br><b>r group in case of t</b> e | ension      | loading  |   |                      |          |     |
| Configuration                                                                                                                            |                                       | with c ≥                                                |             | with s ≥ |   |                      |          |     |
| II: anchors placed<br>parallel to horizontal<br>joint                                                                                    |                                       | Ccr                                                     |             | 200      |   | α <sub>g,N,II</sub>  | [_]      | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint                                                                                |                                       | C <sub>cr</sub>                                         |             | 200      |   | $\alpha_{g,N,\perp}$ | [ []     | 2,0 |
| ESSVE Injection system ON<br>Performances clay hollow be                                                                                 | E, ONE<br>rick Bri                    | ICE for masonry<br>que creuse C40                       |             |          |   | Anr                  | nex C 33 |     |
| Installation parameters                                                                                                                  |                                       |                                                         |             |          |   |                      |          |     |



| Brick type: C                                                         | lay hollow brick Bri                                                                                                       | que creuse C4                                              | 0                         |                                 |                      |            |          |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|---------------------------------|----------------------|------------|----------|
| Table C83: G                                                          | aroup factor for anche                                                                                                     | or group in case                                           | of shear loa              | ding parallel t                 | o free edge          |            |          |
| Cor                                                                   | figuration                                                                                                                 | with c ≥                                                   | :                         | with s ≥                        |                      |            |          |
| II: anchors place<br>parallel to horizon<br>joint                     | ed<br>ntal                                                                                                                 | C <sub>cr</sub>                                            |                           | 500                             | α <sub>g,V,II</sub>  |            | 2,0      |
| ⊥: anchors place<br>perpendicular t<br>horizontal join                | ed<br>o<br>t                                                                                                               | C <sub>cr</sub>                                            |                           | 200                             | $\alpha_{g,V,\perp}$ | [-]        | 2,0      |
| Table C84: G                                                          | aroup factor for anch                                                                                                      | or group in case                                           | of shear loa              | ding perpendi                   | cular to free e      | edge       |          |
| Cor                                                                   | figuration                                                                                                                 | with c ≥                                                   | :                         | with s ≥                        |                      |            |          |
| II: anchors place<br>parallel to horizon<br>joint                     | ed<br>ntal                                                                                                                 | Ccr                                                        |                           | 500                             | α <sub>g,V,II</sub>  | <b>F</b> 1 | 2,0      |
| ⊥: anchors plac<br>perpendicular t<br>horizontal join                 | ed<br>o<br>t                                                                                                               | Ccr                                                        |                           | 200                             | $\alpha_{g,V,\perp}$ | [-]        | 2,0      |
| Table C85: 0                                                          | Characteristic values                                                                                                      | of resistance ur                                           | der tension               | and shear loa                   | ds                   |            |          |
|                                                                       |                                                                                                                            |                                                            |                           | Characte                        | ristic resistance    | Э          |          |
|                                                                       |                                                                                                                            |                                                            |                           | Use                             | e category           |            |          |
|                                                                       |                                                                                                                            | Effective                                                  |                           | d/d                             |                      |            | d/d      |
|                                                                       |                                                                                                                            | anchorage                                                  |                           | w/d                             |                      |            | w/d      |
| Anchor size                                                           | Sleeve                                                                                                                     | depth                                                      |                           | w/w                             |                      |            | w/w      |
|                                                                       |                                                                                                                            |                                                            | 4000/0400                 | 0000/5000                       | 10000/7000           | F          | or all   |
|                                                                       |                                                                                                                            |                                                            | 40°C/24°C                 | 80°C/50°C                       | 120°C/72°C           | tem        | perature |
|                                                                       | -                                                                                                                          | h.                                                         |                           |                                 | )                    |            | 2)3)     |
|                                                                       | -                                                                                                                          | [mm]                                                       |                           | Rk,b — NRk,p                    | [kN]                 | V          | Rk,b     |
|                                                                       |                                                                                                                            | Compressive st                                             | trength $f_{\rm h} \ge 4$ | N/mm <sup>2</sup>               |                      |            |          |
| M8                                                                    | 12x80                                                                                                                      | 80                                                         | 0.6                       | 0.6                             | 0.6                  |            | 0.9      |
| M8 / M10/                                                             | 16x85                                                                                                                      | 85                                                         | 0.6                       | 0.6                             | 0.6                  |            | 0.9      |
| IG-M6                                                                 | 16x130                                                                                                                     | 130                                                        | 0,6                       | 0,6                             | 0.6                  |            | 0.9      |
| M12 / M16 /                                                           | 20x85                                                                                                                      | 85                                                         | 0,6                       | 0,6                             | 0,6                  |            | 0,9      |
| IG-M8 / IG-M10                                                        | 20x130                                                                                                                     | 130                                                        | 0,6                       | 0,6                             | 0,6                  |            | 0,9      |
|                                                                       |                                                                                                                            | Compressive st                                             | trength $f_b \ge 8$       | N/mm <sup>2</sup>               |                      |            |          |
| M8                                                                    | 12x80                                                                                                                      | 80                                                         | 0,9                       | 0,9                             | 0,75                 |            | 1,2      |
| M8 / M10/                                                             | 16x85                                                                                                                      | 85                                                         | 0,9                       | 0,9                             | 0,75                 |            | 1,2      |
| IG-M6                                                                 | 16x130                                                                                                                     | 130                                                        | 0,9                       | 0,9                             | 0,75                 |            | 1,2      |
| M12 / M16 /                                                           | 20x85                                                                                                                      | 85                                                         | 0,9                       | 0,9                             | 0,75                 |            | 1,2      |
| IG-M8 / IG-M10                                                        | 20x130                                                                                                                     | 130                                                        | 0,9                       | 0,9                             | 0,75                 |            | 1,2      |
| <ol> <li>Values ar</li> <li>Calculation</li> <li>The value</li> </ol> | re valid for c <sub>cr</sub> and c <sub>min</sub><br>on of V <sub>Rk,c</sub> see Technical<br>es are valid for steel 5.6 c | Report TR 054<br>or greater. For steel                     | 4.6 and 4.8 mi            | ultiply V <sub>Rk,b</sub> by 0, | 8                    |            |          |
| ESSVE Inject<br>Performances<br>Installation para<br>Characteristic v | tion system ONE, ON<br>s clay hollow brick B<br>umeters (continue)<br>alues of resistance under                            | E ICE for mason<br>rique creuse C4(<br>r tension and shear | ry<br>)<br>load           |                                 | Anne                 | ex C 34    |          |
| l                                                                     |                                                                                                                            |                                                            |                           |                                 |                      |            |          |



|                     |               |                                    |                 |                    |                       | Character                 | ristic resist | ance            |                                   |
|---------------------|---------------|------------------------------------|-----------------|--------------------|-----------------------|---------------------------|---------------|-----------------|-----------------------------------|
|                     |               |                                    |                 |                    |                       | Use                       | category      |                 |                                   |
|                     |               |                                    | Effectiv        | e                  |                       | d/d                       |               |                 | d/d                               |
|                     |               | a                                  | nchora          | ge                 |                       | w/d                       |               |                 | w/d                               |
| Anchor size         | Slee          | ve                                 | depth           |                    |                       | w/w                       |               |                 |                                   |
|                     |               |                                    |                 | 40°                | C/24°C                | 80°C/50°C                 | 120°C/72      | °C .            | temperature                       |
|                     |               |                                    |                 | 40                 | 0/24 0                | 00 0/00 0                 | 120 0/12      |                 | range                             |
|                     |               |                                    | h <sub>ef</sub> |                    |                       | $N_{Bk,p} = N_{Bk,p}^{1}$ | )             |                 | V <sub>Rk.b</sub> <sup>2)3)</sup> |
|                     |               |                                    | [mm]            |                    |                       |                           | [kN]          |                 |                                   |
|                     |               | Cor                                | npressi         | ve strengt         | h f <sub>b</sub> ≥ 12 | N/mm <sup>2</sup>         |               |                 |                                   |
| M8                  | 12x8          | 30                                 | 80              |                    | 1,2                   | 1,2                       | 0,9           |                 | 1,5                               |
| M8 / M10/           | 16x8          | 35                                 | 85              |                    | 1,2                   | 1,2                       | 0,9           |                 | 1,5                               |
| IG-M6               | 16x1          | 30                                 | 130             |                    | 1,2                   | 1,2                       | 0,9           |                 | 1,5                               |
| M12 / M16 /         | 20x8          | 35                                 | 85              |                    | 1,2                   | 1,2                       | 0,9           |                 | 1,5                               |
| <u>G-M8 / IG-M1</u> | 0 20x1        | 30                                 | 130             |                    | 1,2                   | 1,2                       | 0,9           |                 | 1,5                               |
| Table C87:          | Displaceme    | nts<br>Effective                   |                 |                    |                       |                           |               |                 |                                   |
| Anchor size         | Sleeve        | anchorage<br>depth h <sub>ef</sub> | N               | δ <sub>N</sub> / N | δ <sub>N0</sub>       | δ <sub>N∞</sub>           | V             | δ <sub>vo</sub> | δ <sub>V∞</sub>                   |
|                     |               | [mm]                               | [kN]            | [mm/kN]            | [mm]                  | [mm]                      | [kN]          | [mm]            | ] [mm]                            |
| M8                  | 12x80         | 80                                 | 0,17            |                    | 0,14                  | 0,27                      |               |                 |                                   |
| M8 / M10/           | 16x85         | 85                                 |                 |                    |                       |                           | -             |                 |                                   |
|                     | 16x130        | 130                                | 0,14            | 0,80               | 0,11                  | 0,23                      | 0,3           | 0,9             | 1,35                              |
| M12/M16/            | 20x85         | 85                                 | 0,17            |                    | 0,14                  | 0,27                      | -             |                 |                                   |
| IG-M10              | 20x130        | 130                                | 0,14            |                    | 0,11                  | 0,23                      |               |                 |                                   |
|                     |               |                                    |                 |                    |                       |                           |               |                 |                                   |
| ESSVE Inie          | ection system |                                    | E for m         | asonry             |                       |                           |               |                 |                                   |



| Brick type: Clay hollow brick              | k Blo             | cchi Leggeri          |          |          |                      |          |     |
|--------------------------------------------|-------------------|-----------------------|----------|----------|----------------------|----------|-----|
| Table C88: Description of the              | e bric            | :k                    |          |          |                      |          |     |
| Brick type                                 |                   | Clay hollow brick     |          |          |                      |          |     |
| Bulk density o [kg/c                       | 1m <sup>3</sup> 1 |                       |          |          |                      |          |     |
| Compressive strength $f_{\rm b} \ge [N/m]$ | $m^2$             | 4, 6, 8 or 12         |          |          | A.                   |          |     |
|                                            |                   | EN 771-1              |          |          |                      | 10       |     |
| Producer (country code)                    |                   | e.g. Wienerberger     | (IT)     |          |                      |          |     |
| Brick dimensions [r                        | nm]               | 250 x 120 x 250       | <u> </u> |          |                      |          |     |
| Drilling method                            |                   | Rotary                |          |          |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   |                       |          | 6-11     | =  1                 |          |     |
| }                                          |                   |                       |          |          | 1                    |          |     |
|                                            |                   |                       |          |          | 1                    |          |     |
|                                            |                   |                       |          |          |                      |          |     |
| 120 }                                      |                   |                       |          | 32 - 43  |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   |                       |          |          | 5                    |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   | 250                   | ) (      |          |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
| Table C89: Installation param              | neters            | 3                     |          |          |                      |          |     |
| Anchor size                                |                   |                       | [-]      |          | All sizes            |          |     |
| Edge distance c <sub>cr</sub>              |                   |                       | [mm]     |          | 100 (120)            | 1)       |     |
| Minimum edge distance c <sub>mi</sub>      | n                 |                       | [mm]     |          | 60                   |          |     |
| Spacing Scr.                               | ,11               |                       | [mm]     |          | 250                  |          |     |
| Scr.                                       | ,⊥                |                       | [mm]     |          | 120                  |          |     |
| Minimum spacing S <sub>mi</sub>            |                   | 100 and 01 100,000    | լՠՠֈ     |          | 100                  |          |     |
| Value in brackets for SH20x85; S           | SH20x             | 130 and SH20x200      |          |          |                      |          |     |
| Table COOL Crown factor for a              | maha              | r aroun in cocc of t  | onolon   | looding  |                      |          |     |
|                                            | ancho             | in group in case of t | ension   | loading  |                      |          | 1   |
|                                            | T                 | with c ≥              |          | with s ≥ |                      |          |     |
| II: anchors placed                         |                   | 60                    |          | 100      | ( A N II             |          | 1,0 |
| joint                                      |                   | C <sub>cr</sub>       |          | 250      | Ctg,N,II             |          | 2,0 |
| ⊥: anchors placed                          | Ŧ                 | - Schröcken           |          |          |                      | - [-]    |     |
| perpendicular to                           |                   | 60                    |          | 100      | $\alpha_{g,N,\perp}$ |          | 2,0 |
| horizontal joint                           | 1                 |                       |          |          |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   |                       |          |          |                      |          |     |
|                                            |                   |                       |          | I        |                      |          |     |
| ESSVE Injection system ONE                 | , ONE             | EICE for masonry      |          |          |                      |          |     |
| Performances clay bollow bri               | ck Bl             | occhi Leggeri         |          |          | An                   | nex C 36 |     |
| Description of the brick                   |                   | coon Leggen           |          |          |                      |          |     |
| Installation parameters                    |                   |                       |          |          |                      |          |     |



| Brick type: C                                                                                            | lay hollow brick Blo                                                                                                                                              | cchi Leggeri                                                                 |                                       |                                                    |                               |                       |                                     |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|-------------------------------|-----------------------|-------------------------------------|
| Table C91: C                                                                                             | Group factor for ancho                                                                                                                                            | or group in case o                                                           | of shear loadi                        | ng parallel to                                     | free edge                     |                       | _                                   |
| Cor                                                                                                      | figuration                                                                                                                                                        | with c ≥                                                                     |                                       | with s ≥                                           |                               |                       |                                     |
| II: anchors plac                                                                                         | ed                                                                                                                                                                | 60 <sup>1)</sup>                                                             |                                       | 100 <sup>1)</sup>                                  | (Co VIII                      |                       | 1,0                                 |
| joint                                                                                                    |                                                                                                                                                                   | C <sub>cr</sub>                                                              |                                       | 250                                                | αg,v,li                       |                       | 2,0                                 |
| ⊥: anchors plac                                                                                          | ed                                                                                                                                                                | 60 <sup>1)</sup>                                                             |                                       | 100 <sup>1)</sup>                                  |                               | [-]                   | 1,6                                 |
| horizontal join                                                                                          | t                                                                                                                                                                 | C <sub>cr</sub>                                                              |                                       | 250                                                | α <sub>g,V,⊥</sub>            |                       | 2,0                                 |
| <sup>1)</sup> Only valid for $V_{f}$                                                                     | Rk,b according to Table C93                                                                                                                                       | 3 and C94 values in                                                          | brackets                              |                                                    |                               |                       |                                     |
| Table C92: 0                                                                                             | Group factor for ancho                                                                                                                                            | r group in case o                                                            | of shear loadi                        | ng perpendic                                       | cular to free                 | edge                  |                                     |
| Cor                                                                                                      | figuration                                                                                                                                                        | with c ≥                                                                     |                                       | with s ≥                                           |                               |                       |                                     |
| II: anchors plac                                                                                         | ed                                                                                                                                                                | 60 <sup>1)</sup>                                                             |                                       | 100 <sup>1)</sup>                                  |                               |                       | 1,0                                 |
| joint                                                                                                    | ntal                                                                                                                                                              | C <sub>cr</sub>                                                              |                                       | 250                                                | α <sub>g,V,II</sub>           |                       | 2,0                                 |
| ⊥: anchors plac                                                                                          | ed                                                                                                                                                                | 60 <sup>1)</sup>                                                             |                                       | 100 <sup>1)</sup>                                  |                               | [-]                   | 1.6                                 |
| perpendicular<br>horizontal join                                                                         | to                                                                                                                                                                | Ccr                                                                          |                                       | 250                                                | α <sub>g,V,⊥</sub>            |                       | 2,0                                 |
|                                                                                                          |                                                                                                                                                                   |                                                                              | bracketa                              | 200                                                |                               |                       | 2,0                                 |
| Table C93:                                                                                               | Characteristic values of                                                                                                                                          | of resistance und                                                            | er tension ar                         | id shear load                                      | l <b>s</b><br>ristic resistan | ice                   |                                     |
|                                                                                                          |                                                                                                                                                                   |                                                                              |                                       | Use                                                | category                      |                       |                                     |
|                                                                                                          |                                                                                                                                                                   | Effective                                                                    |                                       | d/d;                                               | w/d; w/w                      |                       |                                     |
| Anchor size                                                                                              | Sleeve                                                                                                                                                            | depth                                                                        | 40°C/24°C                             | 80°C/50°C                                          | 120°C/72°                     | °C ter                | For all<br>nperature<br>range       |
|                                                                                                          |                                                                                                                                                                   | h <sub>ef</sub>                                                              |                                       | $N_{Rk,b} = N_{Rk,p}$                              | 1)                            |                       | V <sub>Bk,b</sub> <sup>4)</sup>     |
|                                                                                                          |                                                                                                                                                                   | [mm]                                                                         |                                       |                                                    | [kN]                          |                       |                                     |
|                                                                                                          |                                                                                                                                                                   | Compressive stre                                                             | ength f <sub>b</sub> ≥ 4 N            | l/mm <sup>2</sup>                                  |                               |                       |                                     |
| M8                                                                                                       | 12x80                                                                                                                                                             | 80                                                                           |                                       |                                                    |                               |                       |                                     |
| M8 / M10/                                                                                                | 16x85                                                                                                                                                             | 85                                                                           |                                       |                                                    |                               |                       |                                     |
| IG-M6                                                                                                    | 16x130                                                                                                                                                            | 130                                                                          | 0.4                                   | 0.4                                                | 0.0                           |                       | $o^{2}$ ( $o^{3}$ )                 |
|                                                                                                          | 20x85                                                                                                                                                             | 85                                                                           | 0,4                                   | 0,4                                                | 0,3                           | 2,                    | 0 (0,9)                             |
| M12/M16/                                                                                                 | 20x130                                                                                                                                                            | 130                                                                          |                                       |                                                    |                               |                       |                                     |
| IG-M8 / IG-MITU                                                                                          | 20x200                                                                                                                                                            | 200                                                                          | 1                                     |                                                    |                               |                       |                                     |
|                                                                                                          |                                                                                                                                                                   | Compressive stre                                                             | ength f <sub>b</sub> ≥ 6 N            | l/mm <sup>2</sup>                                  |                               |                       |                                     |
| M8                                                                                                       | 12x80                                                                                                                                                             | 80                                                                           |                                       |                                                    |                               |                       |                                     |
| M8 / M10/                                                                                                | 16x85                                                                                                                                                             | 85                                                                           |                                       |                                                    |                               |                       |                                     |
| IG-M6                                                                                                    | 16x130                                                                                                                                                            | 130                                                                          | 1                                     |                                                    |                               |                       | -2)                                 |
|                                                                                                          | 20x85                                                                                                                                                             | 85                                                                           | 0,5                                   | 0,5                                                | 0,4                           | 2,                    | 5 <sup>-7</sup> (1,2) <sup>37</sup> |
| M12 / M16 /                                                                                              | 20x130                                                                                                                                                            | 130                                                                          | 1                                     |                                                    |                               |                       |                                     |
| IG-M8 / IG-M10                                                                                           | 20x200                                                                                                                                                            | 200                                                                          | 1                                     |                                                    |                               |                       |                                     |
| <ol> <li>Values are va</li> <li>Calculation of</li> <li>Values in brac</li> <li>The values ar</li> </ol> | lid for $c_{cr}$ and $c_{min}$<br>V <sub>Rk,c</sub> see Technical Report<br>ckets V <sub>Rk,c</sub> = V <sub>Rk,b</sub> for anch<br>e valid for steel 5.6 or grea | rt TR 054, except for<br>ors with c <sub>min</sub><br>ater. For steel 4.6 ar | r shear load par<br>nd 4.8 multiply V | ⊔<br>allel to free edo<br>/ <sub>Rk,b</sub> by 0,8 | ge with c ≥ 125               | 5 mm: V <sub>Rk</sub> | $_{,c,II} = V_{Rk,b}$               |
| ESSVE Injec<br>Performance                                                                               | tion system ONE, ONE<br>s clay hollow brick Blo                                                                                                                   | E ICE for masonry<br>occhi Leggeri                                           | <b>y</b>                              |                                                    | Anr                           | nex C 37              |                                     |
| Installation para<br>Characteristic v                                                                    | ameters (continue)<br>values of resistance under                                                                                                                  | tension and shear lo                                                         | bad                                   |                                                    |                               |                       |                                     |



| Brick type:                                                                               | Clay hollo                                                  | ow brick Blo                                                                         | cchi Lo                         | eggeri                                                   |                                     |                                                   |              |                 |                  |                                        |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|-------------------------------------|---------------------------------------------------|--------------|-----------------|------------------|----------------------------------------|
| Table C94:                                                                                | Characte                                                    | ristic values o                                                                      | of resis                        | tance unde                                               | er tension an                       | d shear load                                      | ls (contir   | nue)            |                  |                                        |
|                                                                                           |                                                             |                                                                                      |                                 |                                                          |                                     | Characte                                          | ristic resis | stance          |                  |                                        |
|                                                                                           |                                                             |                                                                                      |                                 |                                                          |                                     | Use                                               | e category   | /               |                  |                                        |
|                                                                                           |                                                             |                                                                                      | Eff                             | ective                                                   |                                     |                                                   | d/d          |                 |                  |                                        |
|                                                                                           |                                                             |                                                                                      | anc                             | horage                                                   |                                     |                                                   | w/d          |                 |                  |                                        |
| Anchor size                                                                               | S                                                           | Sleeve                                                                               | d                               | epth                                                     |                                     |                                                   |              |                 |                  | or all                                 |
|                                                                                           |                                                             |                                                                                      |                                 |                                                          | 40°C/24°C                           | 80°C/50°C                                         | 120°C        | /72°C           | tem<br>r         | perature<br>ange                       |
|                                                                                           |                                                             |                                                                                      |                                 | h <sub>ef</sub>                                          |                                     | $N_{Bk,b} = N_{Bk,i}$                             | 1)           |                 | \                | $I_{\text{Bk,b}}^{4)}$                 |
|                                                                                           |                                                             |                                                                                      | [                               | mm]                                                      |                                     |                                                   | [kN]         |                 |                  |                                        |
|                                                                                           |                                                             |                                                                                      |                                 |                                                          |                                     | . 2                                               |              |                 |                  |                                        |
| N/0                                                                                       |                                                             | 1000                                                                                 | Compr                           | essive stre                                              | $ngth f_b \ge 8 N$                  | /mm <sup>-</sup>                                  |              |                 |                  |                                        |
|                                                                                           |                                                             | 12x80                                                                                |                                 | 80                                                       |                                     |                                                   |              |                 |                  |                                        |
| M8 / M10/                                                                                 |                                                             | 16X85                                                                                |                                 | 120                                                      |                                     |                                                   |              |                 |                  |                                        |
| 10-100                                                                                    |                                                             | 00,000                                                                               |                                 | 95                                                       | 0,6                                 | 0,6                                               | 0,           | 5               | 3,0 <sup>2</sup> | <sup>2)</sup> (1,2) <sup>3)</sup>      |
| M12/M16/                                                                                  | 2                                                           | 20803                                                                                |                                 | 120                                                      |                                     |                                                   |              |                 |                  |                                        |
| IG-M8 / IG-M1                                                                             | 0 2                                                         | 0x200                                                                                |                                 | 200                                                      |                                     |                                                   |              |                 |                  |                                        |
|                                                                                           | <b>_</b>                                                    | (                                                                                    | Compre                          | essive strer                                             | nath $f_{\downarrow} \ge 12$ N      | J/mm <sup>2</sup>                                 |              |                 |                  |                                        |
| M8                                                                                        | -                                                           | 12x80                                                                                | 50mpre                          | 80                                                       | ·g                                  |                                                   |              |                 |                  |                                        |
| M8 / M10/                                                                                 |                                                             | 16x85                                                                                |                                 | 85                                                       |                                     |                                                   |              |                 |                  |                                        |
| IG-M6                                                                                     | 1                                                           | 6x130                                                                                |                                 | 130                                                      |                                     |                                                   |              |                 | 0.5              | $(\mathbf{z}, \mathbf{z}, \mathbf{z})$ |
|                                                                                           | 2                                                           | 20x85                                                                                |                                 | 85                                                       | 0,6                                 | 0,6                                               | 0,           | 6               | 3,5              | <sup>-</sup> / (1,5) <sup>°</sup> /    |
| M12/M16/                                                                                  | 0 2                                                         | 0x130                                                                                |                                 | 130                                                      |                                     |                                                   |              |                 |                  |                                        |
|                                                                                           | 2                                                           | 0x200                                                                                |                                 | 200                                                      |                                     |                                                   |              |                 |                  |                                        |
| <sup>2)</sup> Calcul<br>V <sub>Rk,b</sub><br><sup>3)</sup> Values<br><sup>4)</sup> The va | ation of V <sub>Rk,c</sub><br>in brackets<br>alues are vali | see Technical F<br>$V_{Rk,c} = V_{Rk,b}$ for a<br>d for steel 5.6 or<br><b>ments</b> | Report Th<br>anchors<br>greater | R 054, excep<br>with c <sub>min</sub><br>. For steel 4.6 | t for shear load<br>6 and 4.8 multi | d parallel to fre<br>ply V <sub>Rk,b</sub> by 0,8 | e edge wit   | h c ≥ 125       | mm: '            | V <sub>Rk,c,II</sub> =                 |
| Anchor                                                                                    | Sloovo                                                      | Effective<br>anchorage                                                               | N                               | δ <sub>N</sub> / N                                       | δ <sub>N0</sub>                     | δ <sub>N∞</sub>                                   | V            | δ <sub>vo</sub> |                  | δ <sub>V∞</sub>                        |
| size                                                                                      | Sleeve                                                      | depth h <sub>ef</sub>                                                                |                                 |                                                          |                                     |                                                   |              |                 |                  |                                        |
|                                                                                           |                                                             | [mm]                                                                                 | [kN]                            | [mm/kN]                                                  | [mm]                                | [mm]                                              | [kN]         | [mm             | ]                | [mm]                                   |
| All sizes                                                                                 | All sizes                                                   | All sizes                                                                            | 0,17                            | 1,20                                                     | 0,21                                | 0,41                                              | 0,9          | 1,20            | )                | 1,80                                   |
|                                                                                           |                                                             |                                                                                      |                                 |                                                          |                                     |                                                   |              |                 |                  |                                        |
| ESSVE Inje<br>Performan<br>Characteristi<br>Displacemen                                   | ection syst<br>ces clay ho<br>c values of re                | em ONE, ONE<br>bllow brick Blo<br>esistance under                                    | E ICE fo                        | e <b>r masonry</b><br>eggeri<br>and shear loa            | ad (continue)                       |                                                   |              | Annex (         | C 38             |                                        |



| Brick type: Clay hollo                                                                                                                     | w brick Do                                      | opio Uni                                                           |           |                        |          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|-----------|------------------------|----------|-----|
| Table C96: Descriptio                                                                                                                      | on of the brid                                  | spie em                                                            |           |                        |          |     |
| Defektive                                                                                                                                  |                                                 | Clay hollow brick                                                  |           |                        |          |     |
| Brick type                                                                                                                                 |                                                 | Doppio Uni                                                         |           |                        | -        |     |
| Bulk density                                                                                                                               | ρ [kg/dm³]                                      | 0,9                                                                |           | all links              | -        |     |
| Compressive strength ft                                                                                                                    | $_{\rm D} \ge [{\rm N/mm}^2]$                   | 10, 16, 20 or 28                                                   |           |                        |          |     |
| Code                                                                                                                                       |                                                 | EN 771-1                                                           |           |                        |          |     |
| Producer (country code)                                                                                                                    |                                                 | e.g. Wienerberger (IT)                                             |           |                        |          |     |
| Brick dimensions                                                                                                                           | [mm]                                            | 250 x 120 x 120                                                    |           |                        |          |     |
| Drilling method                                                                                                                            |                                                 | Rotary                                                             |           |                        |          |     |
|                                                                                                                                            | 11                                              | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |           | 120                    |          |     |
| Table C97: Installation                                                                                                                    | n parameters                                    | 3                                                                  |           |                        |          |     |
| Anchor size                                                                                                                                |                                                 | [-]                                                                |           | All sizes              |          |     |
| Edge distance                                                                                                                              | Ccr                                             | [mm                                                                | ]         | 100 (120) <sup>1</sup> | 1)       |     |
| Minimum edge distance                                                                                                                      | C <sub>min</sub> <sup>2)</sup>                  | [mm                                                                | ]         | 60                     |          |     |
| Spacing                                                                                                                                    | S <sub>cr,II</sub>                              | [mm                                                                | ]         | 250                    |          |     |
|                                                                                                                                            | S <sub>cr,⊥</sub>                               | [mm                                                                | ]         | 120                    |          |     |
| Minimum spacing                                                                                                                            | Smin,II                                         | [mm                                                                | ]         | 100                    |          |     |
| <sup>1)</sup> Value in brackets for SH<br><sup>2)</sup> For V <sub>Rk,c</sub> : c <sub>min</sub> according<br><b>Table C98:</b> Group fact | I20x85; SH20x<br>to Technical F<br>or for ancho | 130 and SH20x200<br>Report TR 054<br>or group in case of tensio    | n loading |                        |          |     |
| Configuration                                                                                                                              |                                                 | with c ≥                                                           | with s ≥  |                        |          |     |
| II: anchors placed                                                                                                                         |                                                 | 60                                                                 | 100       |                        |          | 1,0 |
| parallel to horizontal joint                                                                                                               |                                                 | C <sub>cr</sub>                                                    | 250       | α <sub>g,N,II</sub>    |          | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint                                                                                  |                                                 | 60                                                                 | 120       | $\alpha_{g,N,\perp}$   |          | 2,0 |
| ESSVE Injection syste<br>Performances clay hol                                                                                             | m ONE, ONE<br>low brick Do                      | E ICE for masonry<br>oppio Uni                                     |           | Anı                    | nex C 39 |     |
| Installation parameters                                                                                                                    |                                                 |                                                                    |           |                        |          |     |



| Brick type: C                                                                                | lay hollow brick Dop                                                                                     | pio Uni                               |                             |                               |                      |         |                               |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|-------------------------------|----------------------|---------|-------------------------------|
| Table C99: 0                                                                                 | Group factor for ancho                                                                                   | r group in case o                     | of shear loadi              | ng parallel t                 | o free edge          |         |                               |
| Cor                                                                                          | nfiguration                                                                                              | with c ≥                              |                             | with s ≥                      |                      |         |                               |
| II: anchors plac<br>parallel to horizo<br>joint                                              | ed<br>ntal                                                                                               | Ccr                                   |                             | 250                           | α <sub>g</sub> ,v,II |         | 2,0                           |
| ⊥: anchors plac<br>perpendicular t<br>horizontal join                                        | ed<br>to                                                                                                 | Ccr                                   |                             | 120                           | $\alpha_{g,V,\perp}$ | [-]     | 2,0                           |
| Table C100: 0                                                                                | aroup factor for ancho                                                                                   | r group in case o                     | of shear loadi              | ng perpendi                   | cular to free        | edge    |                               |
| Cor                                                                                          | nfiguration                                                                                              | with c ≥                              |                             | with s ≥                      |                      |         |                               |
| II: anchors plac<br>parallel to horizo<br>joint                                              | ed<br>ntal                                                                                               | C <sub>cr</sub>                       |                             | 250                           | α <sub>g,V,II</sub>  |         | 2,0                           |
| ⊥: anchors plac<br>perpendicular t<br>horizontal join                                        | ed<br>to<br>t                                                                                            | C <sub>cr</sub>                       |                             | 120                           | $\alpha_{g,V,\perp}$ | [-]     | 2,0                           |
| Table C101:                                                                                  | Characteristic values of                                                                                 | of resistance und                     | ler tension ar              | nd shear load                 | ds                   |         |                               |
|                                                                                              |                                                                                                          |                                       |                             | Characte                      | eristic resistan     | се      |                               |
|                                                                                              |                                                                                                          |                                       |                             | Us                            | e category           |         |                               |
|                                                                                              |                                                                                                          | Effective                             |                             |                               | d/d                  |         |                               |
|                                                                                              |                                                                                                          | anchorage                             |                             |                               | w/d                  |         |                               |
| Anchor size                                                                                  | Sleeve                                                                                                   | depth                                 |                             |                               | w/w                  |         | <b>F A</b> II                 |
|                                                                                              |                                                                                                          |                                       | 40°C/24°C                   | 80°C/50°C                     | 120°C/72°0           | C ter   | For All<br>nperature<br>range |
|                                                                                              |                                                                                                          | h <sub>ef</sub>                       |                             | $N_{Rk,b} = N_{Rk,b}$         | 1)<br>p              |         | $V_{Rk,b}^{(2)3)}$            |
|                                                                                              |                                                                                                          | [mm]                                  |                             |                               | [kN]                 |         |                               |
|                                                                                              | (                                                                                                        | Compressive stre                      | ngth f <sub>b</sub> ≥ 10 I  | N/mm²                         |                      |         |                               |
| M8                                                                                           | 12x80                                                                                                    | 80                                    |                             |                               |                      |         |                               |
| M8 / M10/                                                                                    | 16x85                                                                                                    | 85                                    |                             |                               |                      |         |                               |
| IG-M6                                                                                        | 16x130                                                                                                   | 130                                   | 0.6                         | 0.6                           | 0.5                  |         | 15                            |
| M12/M16/                                                                                     | 20x85                                                                                                    | 85                                    | 0,0                         | 0,0                           | 0,0                  |         | 1,0                           |
| IG-M8 / IG-M10                                                                               | 20x130                                                                                                   | 130                                   |                             |                               |                      |         |                               |
|                                                                                              | 20x200                                                                                                   | 200                                   |                             |                               |                      |         |                               |
|                                                                                              | (                                                                                                        | Compressive stre                      | ength f <sub>b</sub> ≥ 16 I | N/mm²                         |                      |         |                               |
| M8                                                                                           | 12x80                                                                                                    | 80                                    | -                           |                               |                      |         |                               |
| M8 / M10/                                                                                    | 16x85                                                                                                    | 85                                    | _                           |                               |                      |         |                               |
| IG-M6                                                                                        | 16x130                                                                                                   | 130                                   | 0.75                        | 0.75                          | 0.6                  |         | 2.0                           |
| M12/M16/                                                                                     | 20x85                                                                                                    | 85                                    | - 0,70                      | 0,70                          | 0,0                  |         | 2,0                           |
| IG-M8 / IG-M10                                                                               | 20x130                                                                                                   | 130                                   | -                           |                               |                      |         |                               |
| 1)                                                                                           | 20x200                                                                                                   | 200                                   |                             |                               |                      |         |                               |
| <ol> <li>Values at<br/><sup>2)</sup> Calculation</li> <li><sup>3)</sup> The value</li> </ol> | re valid for $c_{cr}$ and $c_{min}$<br>on of $V_{Rk,c}$ see Technical F<br>es are valid for steel 5.6 or | Report TR 054<br>greater. For steel 4 | .6 and 4.8 multi            | iply V <sub>Rk,b</sub> by 0,8 | 3                    |         |                               |
| ESSVE Inject                                                                                 | tion system ONE, ONE                                                                                     | EICE for masonry                      | /                           |                               |                      |         |                               |
| Performance<br>Installation para<br>Characteristic v                                         | s clay hollow brick Do<br>ameters (continue)<br>ralues of resistance under                               | ppio Uni<br>tension and shear lo      | bad                         |                               | Ann                  | ex C 40 |                               |



| Brick type: C                                                  | lay hollo                                                     | w brick Dop                                    | pio Un                | ni                     |                                  |                              |              |               |       |         |
|----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|-----------------------|------------------------|----------------------------------|------------------------------|--------------|---------------|-------|---------|
| Table C102:                                                    | Characte                                                      | ristic values o                                | of resis              | tance unde             | er tension an                    | d shear load                 | ds (contin   | ue)           |       |         |
|                                                                |                                                               |                                                |                       | _                      |                                  | Characte                     | ristic resis | stance        |       |         |
|                                                                |                                                               |                                                |                       | -                      |                                  | Use                          | e category   |               |       |         |
|                                                                |                                                               |                                                | Eff                   | ective                 |                                  |                              | d/d          |               |       |         |
|                                                                |                                                               |                                                | anc                   | horage                 |                                  |                              | W/d          |               |       |         |
| Anchor size                                                    | S                                                             | Sleeve                                         | d                     | epth                   |                                  |                              |              |               | Fo    | r All   |
|                                                                |                                                               |                                                |                       |                        | 40°C/24°C                        | 80°C/50°C                    | 120°C/       | 72°C          | tempe | erature |
|                                                                |                                                               |                                                |                       | 1-                     |                                  |                              | 1)           |               | rai   | 2)3)    |
|                                                                |                                                               |                                                |                       | n <sub>ef</sub>        |                                  | $N_{Rk,b} = N_{Rk,b}$        |              |               | VR    | (,b     |
|                                                                |                                                               |                                                | `ompre                | ninj<br>ecivo etror    | ath $f_{\rm c} > 20$ N           | l/mm <sup>2</sup>            | נאואן        |               |       |         |
| MQ                                                             |                                                               | 2280                                           | Jompre                |                        | $ g_{\rm III} _{\rm b} \ge 20$ F | N/11111                      |              |               |       |         |
|                                                                |                                                               | 2X00                                           |                       | 85                     |                                  |                              |              |               |       |         |
|                                                                | 1                                                             | 6×130                                          |                       | 120                    |                                  |                              |              |               |       |         |
|                                                                |                                                               | 02130                                          |                       | 95                     | 0,9                              | 0,9                          | 0,7          | 5             | 2     | ,0      |
| M12 / M16 /                                                    | 2                                                             | 0x130                                          |                       | 120                    |                                  |                              |              |               |       |         |
| IG-M8 / IG-M10                                                 | $2$                                                           | 0×200                                          |                       | 200                    |                                  |                              |              |               |       |         |
|                                                                | 2                                                             | 0,200                                          | Compre                | esive strer            | ath f. > 28 N                    | J/mm <sup>2</sup>            |              |               |       |         |
| M8                                                             | 1                                                             | 2×80                                           | Jompre                | 80                     |                                  |                              |              |               |       |         |
|                                                                |                                                               | 6x85                                           |                       | 85                     |                                  |                              |              |               |       |         |
| IG-M6                                                          | 1                                                             | 6x130                                          |                       | 130                    |                                  |                              |              |               |       |         |
|                                                                |                                                               | 20x85                                          |                       | 85                     | 1,2                              | 1,2                          | 0,9          | 9             | 2     | ,5      |
| M12 / M16 /                                                    | 2                                                             | 0x130                                          |                       | 130                    |                                  |                              |              |               |       |         |
| IG-M8 / IG-M10                                                 | $\frac{2}{2}$                                                 | 0x200                                          |                       | 200                    |                                  |                              |              |               |       |         |
| <sup>2)</sup> Calcula<br><sup>3)</sup> The valu<br>Table C103: | tion of V <sub>Rk,c</sub><br>ues are valid<br><b>Displace</b> | see Technical R<br>d for steel 5.6 or<br>ments | leport TF<br>greater. | R 054<br>For steel 4.6 | 5 and 4.8 multi                  | ply V <sub>Rk,b</sub> by 0,8 | 3            |               |       |         |
| Anchor                                                         | Sleeve                                                        | Effective<br>anchorage<br>depth hef            | N                     | $\delta_{N}$ / N       | δ <sub>N0</sub>                  | δ <sub>N∞</sub>              | v            | $\delta_{V0}$ |       | δ∨∞     |
| 3126                                                           |                                                               | [mm]                                           | [kN]                  | [mm/kN]                | [mm]                             | [mm]                         | [kN]         | [mn           | າ]    | [mm]    |
| All sizes                                                      | All sizes                                                     | All sizes                                      | 0.26                  | 1.20                   | 0.31                             | 0.62                         | 0.6          | 0.3           | 3     | 0.45    |
|                                                                |                                                               |                                                |                       |                        |                                  |                              |              |               |       |         |
| ESSVE Inje                                                     | es clay ho                                                    | em ONE, ONE                                    | ICE fo                | r masonry<br>ni        |                                  |                              |              | Annex         | C 41  |         |
| Displacement                                                   | values of re                                                  | esistance under                                | tension               | and shear loa          | au (continue)                    |                              |              |               |       |         |



| Brick type: Hollow Ligh                                                                                       | nt weight o                    | concrete Bloc creu                       | ux B40    |          |                        |                  |                       |
|---------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------|-----------|----------|------------------------|------------------|-----------------------|
| Brick type                                                                                                    |                                | Hollow light weight                      | concrete  |          |                        |                  |                       |
| Dulla densita                                                                                                 | <b>FI</b>                      | Bloc creux B40                           |           |          |                        |                  |                       |
| Bulk density                                                                                                  | $\rho [kg/dm^{\circ}]$         | 0,8                                      |           |          |                        |                  |                       |
| Compressive strength T <sub>b</sub>                                                                           | ≥ [N/mm <sup>-</sup> ]         | 4                                        |           |          |                        | and the second   | uame                  |
| Code                                                                                                          |                                | EN 771-3                                 |           |          |                        |                  | C.F.                  |
| Producer (country code)                                                                                       |                                | e.g. Sepa (FR)                           |           |          | STORE STREET, STORE ST | Change & Mangard | and the second second |
| Brick dimensions                                                                                              | [mm]                           | 494 x 200 x 190                          |           |          |                        |                  |                       |
| Drilling method                                                                                               |                                | Rotary                                   |           |          |                        |                  |                       |
|                                                                                                               | ]                              | 494                                      |           |          |                        |                  |                       |
| 200                                                                                                           |                                |                                          |           |          | 17                     |                  |                       |
|                                                                                                               |                                |                                          | 17        | ,        |                        |                  |                       |
| Table C105: Installation                                                                                      | parameters                     | ;                                        |           |          |                        |                  |                       |
| Anchor size                                                                                                   |                                |                                          | [-]       |          | All sizes              |                  |                       |
| Edge distance                                                                                                 | Ccr                            |                                          | [mm]      |          | 100 (120) <sup>1</sup> | )                |                       |
| Minimum edge distance                                                                                         | C <sub>min</sub> <sup>2)</sup> |                                          | [mm]      |          | 100 (120) <sup>1</sup> | )                |                       |
| Spacing                                                                                                       | S <sub>cr,II</sub>             |                                          | [mm]      |          | 494                    |                  |                       |
| Misissur seresies                                                                                             | S <sub>cr,⊥</sub>              |                                          | [mm]      |          | 190                    |                  |                       |
| <sup>1)</sup> Value in brackets for SH2<br><sup>2)</sup> For V <sub>Bk c</sub> : c <sub>min</sub> according t | o Technical R                  | 20x130<br>Report TR 054                  | [mm]      |          | 100                    |                  |                       |
| Table C106:         Group factor                                                                              | or for ancho                   | or group in case of t                    | ension lo | ading    |                        |                  |                       |
| Configuration                                                                                                 |                                | with c ≥                                 |           | with s ≥ |                        |                  |                       |
| II: anchors placed                                                                                            |                                | 100                                      |           | 100      |                        |                  | 1,5                   |
| parallel to horizontal                                                                                        | ••                             | C <sub>cr</sub>                          |           | 494      | α <sub>g,N,II</sub>    |                  | 2,0                   |
| ⊥: anchors placed                                                                                             |                                | 100                                      |           | 100      |                        | [-]              | 1.0                   |
| perpendicular to<br>horizontal joint                                                                          | •                              | C <sub>cr</sub>                          |           | 190      | α <sub>g,N,⊥</sub>     |                  | 2,0                   |
| ESSVE Injection system<br>Performances hollow lin<br>Description of the brick                                 | n ONE, ONE<br>ght weight o     | E ICE for masonry<br>concrete Bloc creux | к B40     |          | Anr                    | nex C 42         |                       |



| Brick type                                                                                             | e: Hollow                                                                       | Light weigh                                                                                              | t concret                     | e Bloc cre                                | eux B40                        |                                               |                |                     |               |                                   |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------|-----------------------------------------------|----------------|---------------------|---------------|-----------------------------------|
| Table C107                                                                                             | : Group                                                                         | factor for anc                                                                                           | hor group                     | in case of                                | shear load                     | ling paralle                                  | el to free     | e edg               | е             |                                   |
|                                                                                                        | Configurati                                                                     | on                                                                                                       |                               | with c ≥                                  |                                | with s ≥                                      |                |                     |               |                                   |
| II: anchors                                                                                            | placed                                                                          |                                                                                                          |                               | 50                                        |                                | 100                                           |                |                     |               | 1,1                               |
| parallel to he joint                                                                                   | orizontal                                                                       |                                                                                                          |                               | Ccr                                       |                                | 494                                           |                | α <sub>g,V,II</sub> |               | 2,0                               |
| ⊥: anchors                                                                                             | placed                                                                          |                                                                                                          |                               | 100                                       |                                | 100                                           |                |                     | [-]           | 1,1                               |
| horizonta                                                                                              | l joint                                                                         |                                                                                                          |                               | Ccr                                       |                                | 190                                           |                | α <sub>g,V,⊥</sub>  |               | 2,0                               |
| Table C108                                                                                             | 3: Group f                                                                      | actor for anc                                                                                            | hor group                     | in case of                                | shear load                     | ling perper                                   | ndiculaı       | r to fr             | ee edge       |                                   |
|                                                                                                        | Configurati                                                                     | on                                                                                                       |                               | with c ≥                                  |                                | with s ≥                                      |                |                     |               |                                   |
| II: anchors<br>parallel to he<br>joint                                                                 | placed<br>prizontal                                                             |                                                                                                          |                               | C <sub>cr</sub>                           |                                | 494                                           |                | α <sub>g,V,II</sub> | [-]           | 2,0                               |
| ⊥: anchors<br>perpendic<br>horizonta                                                                   | placed<br>ular to<br>I joint                                                    |                                                                                                          |                               | C <sub>cr</sub>                           |                                | 190                                           |                | $\alpha_{g,V,\bot}$ |               | 2,0                               |
| Table C109                                                                                             | ): Characte                                                                     | eristic values                                                                                           | of resista                    | nce under                                 | tension an                     | d shear loa                                   | ads            |                     |               |                                   |
|                                                                                                        |                                                                                 |                                                                                                          |                               |                                           | Char                           | acteristic re                                 | sistance       | Э                   |               |                                   |
|                                                                                                        |                                                                                 |                                                                                                          |                               |                                           |                                | Use catego                                    | ory            |                     |               | d/d                               |
|                                                                                                        |                                                                                 | Effective                                                                                                |                               | d/d                                       |                                |                                               | w/d            |                     |               | w/d                               |
| Anchor size                                                                                            | Sleeve                                                                          | depth                                                                                                    |                               |                                           |                                |                                               | W/W            |                     |               | w/w                               |
|                                                                                                        |                                                                                 | •                                                                                                        | 40°C/24°C                     | 80°C/50°C                                 | 120°C/72°C                     | 40°C/24°C                                     | 80°C/50        | )°C 12              | 20°C/72°C     | For all<br>temperature<br>range   |
|                                                                                                        |                                                                                 | h <sub>ef</sub>                                                                                          |                               | $N_{Rk,b} = N_{Rk,t}$                     | 1)                             | 1                                             | $V_{Rk,b} = N$ | Rk.p <sup>1)</sup>  |               | V <sub>Rk,b</sub> <sup>2)3)</sup> |
|                                                                                                        |                                                                                 | [mm]                                                                                                     |                               |                                           |                                | [kN]                                          |                |                     |               |                                   |
|                                                                                                        |                                                                                 | I                                                                                                        | Compre                        | essive stre                               | ngth f <sub>b</sub> ≥ 4        | N/mm <sup>2</sup>                             |                |                     |               |                                   |
| M8                                                                                                     | 12x80                                                                           | 80                                                                                                       | 1,2                           | 0,9                                       | 0,75                           | 0,9                                           | 0,9            |                     | 0,75          | 3,0                               |
| M8 / M10/                                                                                              | 16x85                                                                           | 85                                                                                                       | 1,2                           | 0,9                                       | 0,75                           | 1,2                                           | 0,9            |                     | 0,75          | 3,0                               |
|                                                                                                        | 16x130                                                                          | 130                                                                                                      | 1,2                           | 0,9                                       | 0,75                           | 1,2                                           | 0,9            |                     | 0,75          | 3,0                               |
| IG-M8 /                                                                                                | 20x85                                                                           | 85                                                                                                       | 1,2                           | 0,9                                       | 0,75                           | 1,2                                           | 0,9            |                     | 0,75          | 3,0                               |
| IG-M10                                                                                                 | 20x130                                                                          | 130                                                                                                      | 1,2                           | 0,9                                       | 0,75                           | 1,2                                           | 0,9            |                     | 0,75          | 3,0                               |
| <sup>1)</sup> Valu<br><sup>2)</sup> Calc<br>V <sub>Rk,t</sub><br><sup>3)</sup> The<br><b>Table C11</b> | es are valid<br>ulation of V <sub>F</sub><br>values are v<br><b>0: Displace</b> | for c <sub>cr</sub> and c <sub>min</sub><br><sub>lk,c</sub> see Technica<br>alid for steel 5.6<br>ements | al Report TF<br>6 or greater. | R 054, excep<br>For steel 4.6             | t for shear lo<br>6 and 4.8 mu | ad parallel to<br>Itiply V <sub>Rk,b</sub> by | free edg       | ge with             | n c ≥ 250 m   | ım: V <sub>Rk,c,ll</sub> =        |
| Anchor                                                                                                 | Sleeve                                                                          | Effective<br>anchorag                                                                                    | e N                           | δ <sub>N</sub> / N                        | δ <sub>N0</sub>                | δ <sub>N∞</sub>                               | V              | /                   | $\delta_{V0}$ | δ <sub>∨∞</sub>                   |
| size                                                                                                   | 0 CIECVE                                                                        | depth h <sub>e</sub>                                                                                     | F FLNI                        | [mm/kN]]                                  | [mm]                           | [mm]                                          |                |                     | [mm]          | [mm]                              |
| All sizes                                                                                              | All sizes                                                                       | All sizes                                                                                                | 0,34                          | 0,90                                      | 0,31                           | 0,62                                          | 0,8            | 36                  | 0,9           | 1,35                              |
| ESSVE In<br>Performa<br>Installation<br>Characteri                                                     | njection sy<br>nces hollo<br>parameters<br>stic values o                        | stem ONE, O<br>bw light weigh<br>(continue)<br>f resistance und                                          | NE ICE for                    | r masonry<br>e brick Blo<br>and shear loa | oc creux B4                    | 0<br>ments                                    |                |                     | Annex C       | 43                                |



| Brick type                                                                                                                                                                                                                                                                 |                                         | Solid light weight o                                                                                                                                                                                                                                        | concrete b | rick                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       |            |                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------|
| Bulk density                                                                                                                                                                                                                                                               | ρ [kg/dm <sup>3</sup> ]                 | 0,6                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       | and all    |                                                             |
| Compressive strength f                                                                                                                                                                                                                                                     | $h \ge [N/mm^2]$                        | 2                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |            |                                                             |
| Code                                                                                                                                                                                                                                                                       |                                         | EN 771-3                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       | 16103-3    |                                                             |
| Producer (country code)                                                                                                                                                                                                                                                    |                                         | e.g. Bisotherm (DE                                                                                                                                                                                                                                          | Ξ)         |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |            |                                                             |
| Brick dimensions                                                                                                                                                                                                                                                           | [mm]                                    | 300 x 123 x 248                                                                                                                                                                                                                                             | _/         |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       | S. The sea |                                                             |
| Drilling method                                                                                                                                                                                                                                                            | []                                      | Rotary                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                  | 一口的自己的意义                                                                                                                                                                                              | No.        |                                                             |
| Table C112: Installatio                                                                                                                                                                                                                                                    | n parameter                             |                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |            |                                                             |
| Anchor size                                                                                                                                                                                                                                                                | •                                       |                                                                                                                                                                                                                                                             | [-]        |                                                                                                                                                                                                                                                                                                                                  | All sizes                                                                                                                                                                                             |            |                                                             |
| Edge distance                                                                                                                                                                                                                                                              | Ccr                                     |                                                                                                                                                                                                                                                             | [mm]       |                                                                                                                                                                                                                                                                                                                                  | 1,5*h <sub>ef</sub>                                                                                                                                                                                   |            |                                                             |
| linimum edge distance                                                                                                                                                                                                                                                      | Cmin                                    |                                                                                                                                                                                                                                                             | [mm]       |                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                    |            |                                                             |
| Spacing                                                                                                                                                                                                                                                                    | Scr                                     |                                                                                                                                                                                                                                                             | [mm]       |                                                                                                                                                                                                                                                                                                                                  | 3*h <sub>ef</sub>                                                                                                                                                                                     |            |                                                             |
| /linimum spacing                                                                                                                                                                                                                                                           | Smin                                    |                                                                                                                                                                                                                                                             | [mm]       |                                                                                                                                                                                                                                                                                                                                  | 120                                                                                                                                                                                                   |            |                                                             |
| Configuration II: anchors placed                                                                                                                                                                                                                                           |                                         | with c ≥<br>90                                                                                                                                                                                                                                              |            | with s ≥<br>120                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |            | 1,1                                                         |
| parallel to horizontal                                                                                                                                                                                                                                                     |                                         | 1,5*hef                                                                                                                                                                                                                                                     |            | 3*h <sub>ef</sub>                                                                                                                                                                                                                                                                                                                | α <sub>g,N,II</sub>                                                                                                                                                                                   |            | 2,0                                                         |
| ⊥: anchors placed                                                                                                                                                                                                                                                          |                                         | 124                                                                                                                                                                                                                                                         |            | 120                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       | [-]        | 1,1                                                         |
| perpendicular to<br>horizontal joint                                                                                                                                                                                                                                       |                                         | 1,5*hef                                                                                                                                                                                                                                                     |            | 3*h <sub>ef</sub>                                                                                                                                                                                                                                                                                                                | $\alpha_{g,N,\perp}$                                                                                                                                                                                  |            | 2,0                                                         |
| Table C114: Group fact                                                                                                                                                                                                                                                     | tor for ancho                           | or group in case of s                                                                                                                                                                                                                                       | shear load | ding parallel to                                                                                                                                                                                                                                                                                                                 | free edge                                                                                                                                                                                             |            |                                                             |
|                                                                                                                                                                                                                                                                            |                                         | <b>5</b>                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |            |                                                             |
| Configuration                                                                                                                                                                                                                                                              |                                         | with c ≥                                                                                                                                                                                                                                                    |            | with s ≥                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |            |                                                             |
| Configuration                                                                                                                                                                                                                                                              |                                         | with c ≥<br>60                                                                                                                                                                                                                                              |            | with s ≥<br>120                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |            | 0,6                                                         |
| Configuration<br>II: anchors placed<br>parallel to horizontal<br>joint                                                                                                                                                                                                     | V•                                      | with c ≥<br>60<br>90                                                                                                                                                                                                                                        |            | with s ≥<br>120<br>120                                                                                                                                                                                                                                                                                                           | α <sub>g,V,II</sub>                                                                                                                                                                                   | . [.]      | 0,6<br>2,0                                                  |
| Configuration<br>II: anchors placed<br>parallel to horizontal<br>joint<br>L: anchors placed                                                                                                                                                                                |                                         | with c ≥<br>60<br>90<br>60                                                                                                                                                                                                                                  |            | with s ≥<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                    | α <sub>g,V,II</sub>                                                                                                                                                                                   | · [-]      | 0,6<br>2,0<br>0,6                                           |
| Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint                                                                                                                                                          |                                         | with c ≥       60       90       60       124                                                                                                                                                                                                               |            | with s ≥<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                                      | α <sub>g,V,I</sub>                                                                                                                                                                                    | · [-]      | 0,6<br>2,0<br>0,6<br>2,0                                    |
| Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint Table C115: Group fact                                                                                                                                   | v •••                                   | with c ≥         60         90         60         124         or group in case of s                                                                                                                                                                         | shear load | with s ≥<br>120<br>120<br>120<br>120<br>120<br>ding perpendic                                                                                                                                                                                                                                                                    | $\alpha_{g,V,II}$ $\alpha_{g,V,\perp}$ ular to free                                                                                                                                                   | edge       | 0,6<br>2,0<br>0,6<br>2,0                                    |
| Configuration<br>II: anchors placed<br>parallel to horizontal<br>joint<br>L: anchors placed<br>perpendicular to<br>horizontal joint<br>Table C115: Group fact<br>Configuration                                                                                             | V • • • • • • • • • • • • • • • • • • • | with c ≥<br>60<br>90<br>60<br>124<br>er group in case of s<br>with c ≥                                                                                                                                                                                      | shear load | with s ≥<br>120<br>120<br>120<br>120<br>120<br>ding perpendic<br>with s ≥                                                                                                                                                                                                                                                        | $ \alpha_{g,V,II} $ $ \alpha_{g,V,\perp} $ ular to free                                                                                                                                               | edge       | 0,6<br>2,0<br>0,6<br>2,0                                    |
| Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint Table C115: Group fact Configuration II: anchors placed                                                                                                  | V ••<br>tor for ancho                   | with c ≥         60         90         60         124         or group in case of s         with c ≥         60                                                                                                                                             | shear load | with s ≥<br>120<br>120<br>120<br>120<br>120<br>ding perpendic<br>with s ≥<br>120                                                                                                                                                                                                                                                 | α <sub>g,V,II</sub><br>α <sub>g,V,⊥</sub><br>ular to free                                                                                                                                             | edge       | 0,6<br>2,0<br>0,6<br>2,0                                    |
| Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint Table C115: Group fact Configuration II: anchors placed parallel to horizontal joint                                                                     | tor for ancho                           | with c ≥         60         90         60         124         or group in case of s         with c ≥         60         90                                                                                                                                  | shear load | with s ≥<br>120<br>120<br>120<br>120<br>ding perpendic<br>with s ≥<br>120<br>120<br>120                                                                                                                                                                                                                                          | α <sub>g,V,II</sub><br>α <sub>g,V,⊥</sub><br>ular to free                                                                                                                                             | edge       | 0,6<br>2,0<br>0,6<br>2,0<br>0,6<br>2,0                      |
| Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint  Table C115: Group fact Configuration II: anchors placed parallel to horizontal joint L: anchors placed                                                  | V •••<br>tor for ancho                  | with c ≥<br>60<br>90<br>60<br>124<br>or group in case of s<br>with c ≥<br>60<br>90<br>60<br>90<br>60                                                                                                                                                        | shear load | with s ≥<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                 | $\begin{array}{c c} & \alpha_{g,V,II} \\ \hline & \alpha_{g,V,\perp} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                               | edge       | 0,6<br>2,0<br>0,6<br>2,0<br>0,6<br>2,0<br>0,6               |
| Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint II: anchors placed parallel to horizontal joint L: anchors placed parallel to horizontal joint L: anchors placed perpendicular to                        | tor for ancho                           | with c ≥         60         90         60         124         or group in case of s         with c ≥         60         90         60         124                                                                                                           | shear load | with s ≥         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120 | $\alpha_{g,V,II}$ $\alpha_{g,V,\perp}$ $\alpha_{g,V,\perp}$                                                                                                                                           | edge       | 0,6<br>2,0<br>0,6<br>2,0<br>0,6<br>2,0<br>0,6<br>1,0        |
| Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint II: anchors placed parallel to horizontal joint II: anchors placed perpendicular to horizontal joint L: anchors placed perpendicular to horizontal joint | tor for ancho                           | with c ≥         60         90         60         124         or group in case of s         with c ≥         60         90         60         124         or group in case of s         00         60         90         60         1,5*hef         1,5*hef | shear load | with s ≥ 120 120 120 120 120 ding perpendic with s ≥ 120 120 120 120 120 120 120 3*h <sub>ef</sub>                                                                                                                                                                                                                               | $ \begin{array}{c c} & \alpha_{g,V,II} \\ \hline & \alpha_{g,V,\bot} \\ \hline \\ ular to free \\ \hline & \alpha_{g,V,II} \\ \hline & \alpha_{g,V,II} \\ \hline & \alpha_{g,V,\bot} \\ \end{array} $ | edge       | 0,6<br>2,0<br>0,6<br>2,0<br>0,6<br>2,0<br>0,6<br>1,0<br>2,0 |

## Deutsches Institut für Bautechnik

| Brick type: Solid light weight concrete brick - LAC                                                                                                                                                                                                                                                                                               |        |                                 |                                    |                             |                  |               |                 |                             |               |                                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|------------------------------------|-----------------------------|------------------|---------------|-----------------|-----------------------------|---------------|---------------------------------|--|--|
| Table C116:         Characteristic values of resistance under tension and shear loads                                                                                                                                                                                                                                                             |        |                                 |                                    |                             |                  |               |                 |                             |               |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                   | Sleeve |                                 | Characteristic resistance          |                             |                  |               |                 |                             |               |                                 |  |  |
| Anchor<br>size                                                                                                                                                                                                                                                                                                                                    |        |                                 | Use category                       |                             |                  |               |                 |                             |               |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                   |        | Effective<br>anchorage<br>depth | d/d                                |                             |                  |               |                 | d/d<br>w/d<br>w/w           |               |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                   |        |                                 | 40°C/24°C                          | 80°C/50°                    | C 120°C/72       | °C 40°        | °C/24°C         | 80°C/50°C                   | 120°C/72°C    | For all<br>temperature<br>range |  |  |
|                                                                                                                                                                                                                                                                                                                                                   |        | h <sub>ef</sub>                 |                                    | $N_{Rk,b} = N_{Rk,p}^{(1)}$ |                  |               |                 | $N_{Bk,p} = N_{Bk,p}^{(1)}$ |               |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                   |        | [mm]                            |                                    | [kN]                        |                  |               |                 |                             |               |                                 |  |  |
| Compressive strength f <sub>b</sub> ≥ 2 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                         |        |                                 |                                    |                             |                  |               |                 |                             |               |                                 |  |  |
| M8                                                                                                                                                                                                                                                                                                                                                | -      | 80                              | 3,0                                | 2,5                         | 2,0              |               | 2,5             | 2,0                         | 1,5           | 3,0                             |  |  |
| M8 / M10/<br>IG-M6                                                                                                                                                                                                                                                                                                                                | -      | 90                              | 3,0                                | 3,0                         | 2,0              |               | 2,5             | 2,5                         | 2,0           | 3,0                             |  |  |
| M10 /<br>IG-M8                                                                                                                                                                                                                                                                                                                                    | -      | 100                             | 3,5                                | 3,0                         | 2,5              |               | 3,0             | 2,5                         | 2,0           | 3,0                             |  |  |
| M16 /<br>IG-M10                                                                                                                                                                                                                                                                                                                                   | -      | 100                             | 3,0                                | 3,0                         | 2,0              |               | 3,0             | 3,0                         | 2,0           | 3,0                             |  |  |
| M8                                                                                                                                                                                                                                                                                                                                                | 12x80  | 80                              | 2,5                                | 2,5                         | 2,0              |               | 2,5             | 2,0                         | 1,5           | 3,0                             |  |  |
| M8 / M10/                                                                                                                                                                                                                                                                                                                                         | 16x85  | 85                              | 3,0                                | 2,5                         | 2,0              |               | 3,0             | 2,5                         | 2,0           | 3,0                             |  |  |
| IG-M6                                                                                                                                                                                                                                                                                                                                             | 16x130 | 130                             | 3,0                                | 2,5                         | 2,0              |               | 3,0             | 2,5                         | 2,0           | 3,0                             |  |  |
| M12 / M16                                                                                                                                                                                                                                                                                                                                         | 20x85  | 85                              | 2,5                                | 2,5                         | 2,0              |               | 2,5             | 2,5                         | 2,0           | 3,0                             |  |  |
| / IG-M8 /                                                                                                                                                                                                                                                                                                                                         | 20x130 | 130                             | 2,5                                | 2,5                         | 2,0              |               | 2,5             | 2,5                         | 2,0           | 3,0                             |  |  |
| IG-M10                                                                                                                                                                                                                                                                                                                                            | 20x200 | 200                             | 2,5                                | 2,5                         | 2,0              |               | 2,5             | 2,5                         | 2,0           | 3,0                             |  |  |
| <ul> <li>Values are valid for c<sub>cr</sub>, values in brackets are valid for single anchors with c<sub>min</sub></li> <li>For calculation of V<sub>Rk,c</sub> see ETAG029, Annex C</li> <li>The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8</li> <li>Table C117: Displacements</li> </ul> |        |                                 |                                    |                             |                  |               |                 |                             |               |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                   |        |                                 | Effective                          |                             |                  |               |                 |                             |               |                                 |  |  |
| Anchor                                                                                                                                                                                                                                                                                                                                            | size   | e Sleeve                        | anchorage<br>depth h <sub>ef</sub> | Νδ                          | <sub>N</sub> / N | $\delta_{N0}$ | δ <sub>N∝</sub> | . V                         | $\delta_{V0}$ | δ <sub>V∞</sub>                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                   |        |                                 | [mm]                               | [kN] [m                     | m/kN] [I         | nm]           | [mm             | 1] [kN                      | ] [mm]        | [mm]                            |  |  |
| M8                                                                                                                                                                                                                                                                                                                                                |        | -                               | 80                                 |                             |                  |               |                 |                             |               |                                 |  |  |
| M8 / M10/<br>IG-M6                                                                                                                                                                                                                                                                                                                                |        | -                               | 90                                 | 0,86                        | 0,50 (           | ),43          | 0,8             | 6                           |               |                                 |  |  |
| M10 / IG-M8                                                                                                                                                                                                                                                                                                                                       |        | -                               | 100                                | 1,00                        | ) 25 (           | ),35          | 0,7             | 0                           |               |                                 |  |  |
| M16 / IG-M10                                                                                                                                                                                                                                                                                                                                      |        | -                               | 100                                | 0,86                        | ,35 (            | ,30           | 0,6             | 0                           |               |                                 |  |  |

|                    |        |     | -,   |      | -,   | -,   |     |      |      |
|--------------------|--------|-----|------|------|------|------|-----|------|------|
| M8                 | 12x80  | 80  | 0,71 | 0,50 | 0,36 | 0,71 | 0,9 | 0,25 | 0,38 |
| M8 / M10/<br>IG-M6 | 16x85  | 85  |      | 0,35 | 0,25 | 0,50 |     |      |      |
|                    | 16x130 | 130 |      |      |      |      |     |      |      |
|                    | 20x85  | 85  |      |      |      |      |     |      |      |
| M12/M16/           | 20x130 | 130 |      |      |      |      |     |      |      |
|                    | 20x200 | 200 |      |      |      |      |     |      |      |

## ESSVE Injection system ONE, ONE ICE for masonry

**Performances solid light weight concrete brick - LAC** Characteristic values of resistance under tension and shear load Displacements Annex C 45